Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra
Tìm n thuộc Z để các phân thức sau có giá trị nguyên:
1) \(\frac{n-5}{2n+1}\)
2) \(\frac{n^2+4}{n-1}\)
1) Để phân thức đạt trị nguyên
=> n - 5 chia hết cho 2n + 1
<=> 2n - 10 chia hết cho 2n + 1
<=> 2n + 1 - 11 chia hết cho 2n + 1
<=> 11 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}
Ta có bảng sau :
2n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -1 | 5 | -6 |
2) Như câu 1 , ta có :
n2 + 4 chia hết cho n - 1
n2 - n + n + 4 chia hết cho n - 1
<=> n(n - 1) + n + 4 chia hết cho n - 1
<=> n - 1 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Còn lại giống 1 , lập bảng xét giá trị n nha !
Để ; \(\frac{n+3}{n+1}\in Z\)
Thì n + 3 chia hết cho n + 1
=> (n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
a, n3+n2-n+5 chia hết cho n+2
=> n3+2n2-n2-2n+n+2+3 chia hết cho n+2
=> n2(n+2)-n(n+2)+(n+2)+3 chia hết cho n+2
=> (n+2)(n2-n+1) +3 chia hết cho n+2
Mà (n+2)(n2-n+1) chia hết cho n+2
=> 3 chia hết n+2
Mà n+2 thuộc Z => n+2 thuộc Ư(3)={-3,-1,1,3}
=> n=-5,-3,-2,1
Ta có :
\(\frac{1}{n+1}>\frac{1}{n+n}=\frac{1}{2n}\)
\(\frac{1}{n+2}>\frac{1}{n+n}=\frac{1}{2n}\)
\(\frac{1}{n+3}>\frac{1}{n+n}=\frac{1}{2n}\)
......................
\(\frac{1}{n+n}=\frac{1}{n+n}=\frac{1}{2n}\)
Cộng vế với vế ta được :
\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}\)( có n số \(\frac{1}{2n}\) )
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}\) ( đpcm )
Làm chưa chắc đúng
Có \(\frac{n^5-n^3}{n^3+1}=\frac{n^4+n^3}{n^2+n+1}=n^2-\frac{n^2}{n^2+n+1}\)lại có \(n\inℕ^∗\)sra \(\frac{n^2}{n^2+n+1}\inℤ\Leftrightarrow n=0\)
LHQ mk ko bít bn làm sai hay đúng nhưng mk thử vào thì sai rùi