Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn dùng tc kết hợp của phép nhân vs phép cộng tách 4n+1 ra sao cho có 2n-1 rồi tìm n là đc!
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
n^2+3\(⋮\)n-1=>n.(n-1)+n+3\(⋮\)n-1=>n.(n-1)+(n-1)+4\(⋮\)n+1
=>n-1 thuộc U(4)={1,-1,2,-2,4,-4}
=>n={...}
Ta có
2n + 1 chia hết cho 16 - 3n
<=> 3(2n+1) + 2 (16 - 3n ) chia hết cho 16 - 3n
<=> 6n + 3 + 32 - 6n chia hết cho 16 - 3n
<=> 35 chia hết cho 16 - 3n
<=> \(16-3n\inƯ_{35}\)
<=> \(16-3n\in\left\{1;5;7;35;-1;-5;-7;-35\right\}\)
Mà n là số tự nhiên
=> 16 - 3n <16
(+) 16 - 3n =1 => n=5 (TM )
(+) 16 - 3n =5 => n=11/3 (Loại )
(+) 16 - 3n =7 => n=3 (TM)
(+) 16 - 3n = - 1 => n=17/3 ( Loai )
(+) 16 - 3n = - 5 => n=7 (TM)
(+) 16 - 3n = - 7 => n=23/3 ( Loại )
Vậy \(n\in\left\{3;5;7\right\}\)
a) Ta có : \(n^2⋮n-3\)
\(\Rightarrow n^2-3^2+3^2⋮n-3\)
\(\Rightarrow\left(n^2-3^2\right)+3^2⋮n-3\)
\(\Rightarrow\left(n-3\right)\left(n+3\right)+3^2⋮n-3\)(sử dụng hằng đẳng thức trừ 2 bình phương của 2 số)
Vì \(\left(n-3\right)\left(n+3\right)⋮n-3\)
\(\Rightarrow3^2⋮n-3\)
\(\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\inƯ\left(9\right)\)
\(\Rightarrow n-3\in\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng xét các trường hợp :
\(n-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(n\) | \(4\) | \(2\) | \(6\) | \(0\) | \(12\) | \(-6\) |
Vậy các \(n\inℕ\)thỏa mãn là : 4;2;6;0;12
ìm n thuộc N để 4n -1 = 4n + 4 - 5
ta thấy 4n + 4 chia hết cho n +1. Để 4n -1 chia hết cho n +1 thì n +1 phải là ước của - 5
Ư(-5) = {-5; -1; 1; 5}
+) n +1 = -5 => n = -4
+) n +1 = -1 => n = -2
+) n +1 = 1 => n = 0
+) n +1 = 5 => n = 4
Vậy n = {-4; -2; -0; 4}