K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

Ta có 13 + 23 + ... + n3 = (1 + 2 + 3 + ... + n)2 (n \(\inℕ\))

Khi đó (1 + 2 + 3 + ... + n)2 = 608400

<=> (1 + 2+ 3 .... + n)2 = 7802

=> 1 + 2 + 3 + ... + n = 780 (vì n \(\inℕ\))

=> n(n + 1) : 2 = 780

=> n(n + 1) = 1560

=> n(n + 1) = 39 x 40

=> n = 39 

Vậy n = 39

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$125=5^3$

$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$

Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.

Do đó để $A\vdots $ thì $n\vdots 125$

Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$

Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại

Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$

Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên

$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên

Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

15 tháng 11 2015

Ta có 1971 chia 4 dư 3

Mà số chính phương là số chia hết cho 4 hoặc chia 4 dư 1

=>23n chia 4 dư 1 hoặc dư 2

23n chia 4 dư 2 <=>23n là số chẵn(vô lí)

=>23n chia 4 dư 1

Ta có:23 = 3(mod 4)

         23n=3n(mod 4)

=>3n chia 4 dư 1

Xét n nhỏ nhất để 3n chia 4 dư 1 là 2(32=9 chia 4 dư 1)

=>3n là bội của 9(n khác 0)

=> n là số chẵn khác 0

Vậy n chẵn và khác 0 thì...

20 tháng 2 2018

GIÚP MIK với

22 tháng 11 2015

Sao lúc nào cũng dễ vậy???