Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$125=5^3$
$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$
Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.
Do đó để $A\vdots $ thì $n\vdots 125$
Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$
Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại
Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$
Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên
$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên
Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Ta có 1971 chia 4 dư 3
Mà số chính phương là số chia hết cho 4 hoặc chia 4 dư 1
=>23n chia 4 dư 1 hoặc dư 2
23n chia 4 dư 2 <=>23n là số chẵn(vô lí)
=>23n chia 4 dư 1
Ta có:23 = 3(mod 4)
23n=3n(mod 4)
=>3n chia 4 dư 1
Xét n nhỏ nhất để 3n chia 4 dư 1 là 2(32=9 chia 4 dư 1)
=>3n là bội của 9(n khác 0)
=> n là số chẵn khác 0
Vậy n chẵn và khác 0 thì...
Ta có 13 + 23 + ... + n3 = (1 + 2 + 3 + ... + n)2 (n \(\inℕ\))
Khi đó (1 + 2 + 3 + ... + n)2 = 608400
<=> (1 + 2+ 3 .... + n)2 = 7802
=> 1 + 2 + 3 + ... + n = 780 (vì n \(\inℕ\))
=> n(n + 1) : 2 = 780
=> n(n + 1) = 1560
=> n(n + 1) = 39 x 40
=> n = 39
Vậy n = 39