Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213 = 2 . 100 + 1 . 10 +3 = 2. 10^2 + 1.10 + 3 . 10^0
421=4.100 + 2.10 + 1 = 4.10^2 + 2.10 + 1. 10^0
2009; = 2. 1000 + 9 = 2. 10^3 + 9 . 10^0
abc = a . 100 + b . 10 + c = a.10^2 + b.10 + c.10^0
abcde = a.10000 + b . 1000 + c . 100 + d . 10 + e = a . 10^4 + b. 10^3 + c.10^2 + d .10 + e . 10 ^0
a.(2^2 : 4) . 2^n = 4
=>(4:4) . 2^n = 4
=>2^n = 4
=>2^n = 2^2
=>n=2
b.2.16 >_ 2^n > 4
=>32 >_ 2^n > 2^2
=>2^5 >_ 2^n > 2^2
=>n={3;4;5}
\(a,\left(2^2:4\right)\cdot2^n=4\\ \Leftrightarrow2^n=2^2\\ \Leftrightarrow n=2\)
\(b,2\cdot16\ge2^n>4\\ \Leftrightarrow2^5\ge2^n>2^2\\ \Rightarrow2< n\le5\\ \Leftrightarrow n\in\left\{3;4;5\right\}\)
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)
=> n = 3
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4=2^2\)
=> n = 2
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
\(\left(-2\right)^3=-8\) bạn ạ chứ không phải là bằng 8 nên n = 3 là không đúng rồi
\(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot5^n\)
\(\Leftrightarrow2^n=2\cdot5^n\)
\(\Leftrightarrow2^{n-1}=5^n\)
Đến đây thì hình như là lớp 12 mới học, xin lỗi bạn!
a) 2 + 4 + 6 + ... + 2n = 210
1.2 + 2.2 + 2.3 + ... + 2n = 210
2.(1+2+3+...+n) = 210
1 + 2 + 3 + ... + n = 105
\(\frac{n\left(n+1\right)}{2}\)= 105
n(n+1) = 210
n(n+1) = 14.15
=> n = 14
b) 1+3+5+...+(2n-1)=225
\(\frac{\left(2n-1+1\right).n}{2}\) =225
\(\frac{2n.n}{2}\) =225
\(\frac{2.n^2}{2}\) =225
\(n^2\) =225
Ta có: \(n^2\) =225 = \(3^2\).\(5^2\)= \(\left(15\right)^2\)
=> n = 15
\(a,32< 2^n< 128\)
\(=>2^5< 2^n< 2^7\)
\(=>n=6\)
Vậy...
\(b,2.16\ge2^n>4\)
\(=>2^5\ge2^n>2^2\)
\(=>n\in\left\{3;4;5\right\}\)
Vậy...
\(c,3^2.3^n=3^5\)
\(3^n=3^5:3^2\)
\(3^n=3^3\)
\(=>n=3\)
Vậy...
\(d,\left(2^2:4\right).2^n=4\)
\(\left(2^2:2^2\right).2^n=4\)
\(1.2^n=4\)
\(2^n=4:1\)
\(2^n=4\)
\(=>2^n=2^2\)
\(=>n=2\)
Vậy ...
\(e,\dfrac{1}{9}.3^4.3^n=3^7\)
\(\dfrac{1}{9}.81.3^n=3^7\)
\(3^2.3^n=3^7\)
\(3^n=3^7:3^2\)
\(3^n=3^5\)
\(=>n=5\)
Vậy...
\(g,\dfrac{1}{2}.2^n+4.2^n=9.2^5\)
\(\left(\dfrac{1}{2}+4\right).2^n=9.2^5\)
\(\dfrac{9}{2}.2^n=9.32\)
\(\dfrac{9}{2}.2^n=288\)
\(2^n=288:\dfrac{9}{2}\)
\(2^n=2^6\)
\(=>n=6\)
Vậy...
a) \(32< 2^n< 128\\ \Rightarrow2^5< 2^n< 2^7\\ \Rightarrow5< n< 7\)
Mà: \(n\inℕ^∗\)
\(\Rightarrow n=6\)
b) \(2.16\ge2^n>4\\ \Rightarrow2^1.2^4\ge2^n>2^2\\ \Rightarrow2^5\ge2^n>2^2\\ \Rightarrow5\ge n>2\)
Mà: \(n\inℕ^∗\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
c) \(3^2.3^n=3^5\\ \Rightarrow3^{n+2}=3^5\\ \Rightarrow n+2=5\\ \Rightarrow n=3\left(nhận\right)\)