Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 6n-44 chia hết cho n-4
=> 6n-24-20 chia hết cho n-4
=> 6(n-4)-20 chia hết cho n-4
=> 20 chia hết cho n-4
=> n-4 thuộc Ư(20)={-20;-10;-5;-4;-2;-1;1;2;4;5;10;20}
=> n thuộc {-16;6;-1;0;2;3;5;6;8;9;24}
Vậy _____
Học tốt!
Ta có : 6n - 44 = 6n - 4 - 40
=> 6n - 4 - 40 chia hết cho n - 4
Mà 6n - 4 chia hết cho n - 4
=> -40 chia hết cho n -4
=> n-4 thuộc Ư(-40)
Mà Ư(-40) = ( -40; -20; -10, -5; -4; -2; -1; 1; 2; 4; 5; 10; 20; 40 )
=> n - 4 thuộc ( -40; -20; -10, -5; -4; -2; -1; 1; 2; 4; 5; 10; 20; 40 )
=> n thuộc ( -36; -26; -6; -1; 0; 3; 5; 6; 8; 9; 14; 24; 44 )
Ta có : \(7n-41⋮n-4\)
\(\Rightarrow7n-28-13⋮n-4\)
\(\Rightarrow7\left(n-4\right)-13⋮n-4\)
Mà \(7\left(n-4\right)⋮n-4\)
\(\Rightarrow13⋮n-4\)
\(\Rightarrow n-4\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
... (tự làm)
\(8n+14\in B\left(n+4\right)\Leftrightarrow8n+14⋮n+4\)
\(\Rightarrow8n+32-18⋮n+4\)
\(\Rightarrow8\left(n+4\right)-18⋮n+4\)
\(\Rightarrow18⋮n+4\)
\(\Rightarrow n+4\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
\(\Rightarrow n+4=1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\)
\(\Rightarrow n\in\left\{-3;-5;-2;-6;-1;-7;2;-10;5;-13;14;-22\right\}\)
MAX nhiều luôn .đúng 100%
. đúng cho biết nha.
Giải:
Ta có:
6a + 9 chia hết cho a - 1
=> 6a - 6 + 6 + 9 chia hết cho a - 1
=> 6(a-1) + 15 chia hết cho a-1
Ta thấy: 6(a-1) chia hết cho a-1
=> a-1 thuộc vào Ư(15)
=> a-1 = {+1;-1;+5;-5;+3;-3;+15;-15}
Ta có bảng sau:
a-1 | 1 | -1 | 5 | -5 | 3 | -3 | 15 | -15 |
a | 2 | 0 | 6 | -4 | 4 | -2 | 16 | -14 |
nếu đúng thì kết bn vs mình nhes^_^
chúc bn hok tốt
3c + 4 chia hết cho c - 7
=>3c-21+25 chia hết cho c-7
=>3.(c-7)+25 chia hết cho c-7
=>25 chia hết cho c-7
=>c-7 thuộc Ư(25)={1;-1;5;-5;25;25}
Ta có bảng sau:
c-7 | 1 | -1 | 5 | -5 | 25 | -25 |
c | 8 | 6 | 12 | 2 | 32 | -18 |
Vậy c={8;6;12;2;32;-18}
<=>3(c-7)+11 chia hết c-7
=>11 chia hết c-7
=>c-7\(\in\){-11,-1,11,1}
x\(\in\){-4,6,18,9}
Vì x\(\in\)Z
=>x=-4
Ta có \(2c+8⋮c-2=>2\left(c-2\right)+12⋮c-2\)
Do \(2\left(c-2\right)⋮c-2\)nên \(12⋮c-2\)
\(=>c-2\inƯ\left(12\right)=\left\{12;6;4;3;2;1;-1;-2;-3;-4;-6;-12\right\}\)
\(=>c\in\left\{14;8;6;5;4;3;1;0;-1;-2;-4;-10\right\}\)( thỏa mãn c thuộc Z )
Vậy ....
4 chia hết cho n + 7
Ta có : \(14⋮n+7\)1
\(\Rightarrow n+7\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-21;-14;-9;-8;-6;-5;0;7\right\}\)
Từ \(14⋮n+7\)và n \(\in\)Z
\(\Rightarrow\)\(n+7\inƯ\left(14\right)\)
Mà \(Ư\left(14\right)=\left\{\mp1;\mp2;\mp7;\mp14\right\}\)
\(\Rightarrow\)\(n+7\in\left\{\mp1;\mp2;\mp7;\mp14\right\}\)
\(\Rightarrow\)Ta có bảng sau:
Vậy n \(\in\left\{-21;-14;-9;-8;-6;-5;0;7\right\}\)
hok tốt