Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Vì A là số tự nhiên \(\Rightarrow\) \(A=\frac{n^2+3n}{8}\in N\Rightarrow n^2+3n⋮8\)
\(\Rightarrow n.\left(n+3\right)⋮8\)
Mặt khác (n+3) - n =3 là số lẻ \(\Rightarrow\) n+3 và n không cùng tính chẵn lẻ
\(\Rightarrow\orbr{\begin{cases}n⋮8\\n+3⋮8\end{cases}}\)
TH1 : \(n⋮8\Rightarrow n=8k\)( k \(\in\)N* ) \(\Rightarrow A=\frac{\left(8k\right)^2+8k.3}{8}=8k^2+3k=k.\left(8k+3\right)\)
Mà A là số nguyên tố \(\Rightarrow\)k.(8k+3) là số nguyên tố (1)
Lại có k \(\in\) N* \(\Rightarrow8k+3\in\)N*
8k+3 > k kết hợp (1)
\(\Rightarrow\hept{\begin{cases}k=1\\8k+3laSNT\end{cases}\Rightarrow8k+3=8.1.3=11}\)là SNT ( t/m)
\(\Rightarrow n=8.1=8\)
TH2: \(n+3⋮8\Rightarrow n+3=8k\)( k \(\in\) N* )
\(\Rightarrow n=8k-3\Rightarrow A=\frac{\left(8k-3\right)^2+3.\left(8k-3\right)}{8}\)
\(=\frac{\left(8k-3\right).\left(8k-3+3\right)}{8}=\frac{\left(8k-3\right).8k}{8}=k.\left(8k-3\right)\)
Mà A là SNT \(\Rightarrow k.\left(8k-3\right)\)là SNT (2)
Lại có : k\(\in\)N*\(\Rightarrow k\ge1\Rightarrow8k-3\ge5>0\)
k \(\in\)N* \(\Rightarrow8k-3\)\(\in\)Z ( ngoặc 2 dòng )
\(\Rightarrow8k-3\in\)N* kết hợp (2)
\(\Rightarrow\)+) k=1 và 8k-3 là SNT \(\Rightarrow\)k=1 và 8k-3=8.1-3=5 là SNT \(\Rightarrow n=5\)
+) 8k-3 =1 và k là SNT \(\Rightarrow\)k \(\notin\)N* mà k là SNT ( loại )
Vậy \(n\in\left\{5;8\right\}\)
( lưu ý nhé có chỗ ko viết được TV nên tui ghi ko có dấu )
đợi chút mik làm cho