Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (3n- 4) + (5n – 3) = 8n– 7 là số lẻ, suy ra: trong hai số trên phải có một số chẵn và một số lẻ.
– Nếu 3n– 4 chẵn thì 3n– 4 = 2 ⇔ n = 2 ⇒ 4n– 5 = 3 và 5n– 3 = 7 đều là các số nguyên tố.
– Nếu 5n– 4 chẵn thì 5n– 3 = 2 ⇔ n = 1 ⇒3n – 4 = -1 (loại)
Vậy n= 2 là thỏa mãn.
Xét n lẻ và n>1 thì 5n-3 chẵn và >2=> vô lý
n=1 loại
n chẵn và n>2 thì 3n-4 là hợp số
Thử với n=2 đúng
KL:n=2.
*với n lẻ suy ra 5n lẻ suy ra 5n-3 chẵn và chia hết cho 2 (loại)
*với n chẵn suy ra 3n chẵn suy ra 3n-4 chẵn và chia hết cho 2 (loại)
*với n=2 suy ra 3n-4=2; 4n-5=3; 5n-3=7 (thỏa mãn)
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
Tổng 3 số là 1 số chẵn nên 1 trong 3 số phải có 1 số chẵn nguyên tố (là 2)
Vì 4n-5 lẻ nên 3n-4=2 hoặc 5n-3=2
Giải ra ta được n=2
\(\text{Nếu n = 1 thì 3n - 4 = -1 (loại)}\)
Nếu n = 2 thì:
\(\hept{\begin{cases}3n-4=2.3-4=2\\4n-5=2.4-5=3\\5n-3=2.5-3=7\end{cases}}\)
Các số trên đều là số nguyên tố nên n = 2 thỏa mãn
Nếu n > 2 thì 3n - 4 ; 4n - 5 ; 5n - 3 đều lớn hơn 2
Ta có:
Với n=2k thì 3n - 4 = 6k - 4 \(⋮\) 2 nên không là số nguyên tố
Với n = 2k + 1 thì 5n - 3 = 5 (2k+1) - 3 = 10k + 2 \(⋮\)2 nên không là số nguyên tố
Do đó không có số tự nhiên n > 2 nào thảo mãn
Vậy n=2