Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án của bạn ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Nhận thấy n=2 thỏa mãn điều kiện
Với n>2 ta có:
\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)
Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)
Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)
Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)
Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)
Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)
Vì \(n>2\Rightarrow k\ge2\)
do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)
Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)
Vậy n=2
Bài làm rất hay mặc dù làm rất tắt.
Tuy nhiên:
Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )
------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc \(n^2-1\)
Hoặc: ước số nguyên tố của \(n^2-n+1\) là ước \(n^3-1\) hoặc \(n^2-1\)
Dòng thứ 6 cũng như vậy:
a chia hết b khác hoàn toàn a chia hết cho b
a chia hết b nghĩa là a là ước của b ( a |b)
a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))
3 dòng cuối cô không hiểu em giải thích rõ giúp cô với. Please!!!!
Nhưng cô có cách khác dễ hiểu hơn này:
\(n^2-n+1=3^k\);
\(n+1⋮3\)=> tồn tại m để : n + 1 = 3m
=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)
<=>\(3m\left(n+1-3\right)+3=3^k\)
<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)
=> \(m\left(n+1\right)-3m+1⋮3\)
=> \(1⋮3\)vô lí
\(a_n=\sqrt{2+\frac{2}{n}+\frac{1}{n^2}}+\sqrt{2-\frac{2}{n}+\frac{1}{n^2}}\)
\(\Rightarrow\frac{1}{a_n}=\frac{1}{4}\left(\sqrt{\left(n+1\right)^2+n^2}-\sqrt{n^2+\left(n-1\right)^2}\right)\)
\(\Rightarrow S=\frac{1}{4}\left(\sqrt{2^2+1}-\sqrt{1^2+0}+\sqrt{3^2+2^2}-\sqrt{2^2+1}+...+\sqrt{21^2+20^2}-\sqrt{20^2+19^2}\right)\)
\(=\frac{1}{4}\left(\sqrt{21^2+20^2}-\sqrt{1}\right)=7\)