Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Để AA là số chính phương ⇒26n+17=t2(t∈N)⇒26n+17=t2(t∈N)
⇒26n+13=t2−4⇒26n+13=t2−4
⇒13(2n+1)=(t−2)(t+2)(1)⇒13(2n+1)=(t−2)(t+2)(1)
⇒(t−2)(t+2)⋮13⇒(t−2)(t+2)⋮13⇒⎡⎣t−2⋮13t+2⋮13⇒[t−2⋮13t+2⋮13
*)Xét t+2⋮13⇒t+2=13m(m∈N)t+2⋮13⇒t+2=13m(m∈N)⇒t=13m−2⇒t=13m−2
Thay vào (1)(1)⇒13(2n+1)=13m(13m−4)⇒13(2n+1)=13m(13m−4)
⇒2n+1=m(13m−4)⇒n=13m2−4m−12⇒2n+1=m(13m−4)⇒n=13m2−4m−12
*)Xét t−2⋮13⇒t−2=13m(m∈N)t−2⋮13⇒t−2=13m(m∈N)⇒t=13m+2⇒t=13m+2
Thay vào (1)(1)⇒13(2n+1)=13m(13m+4)⇒13(2n+1)=13m(13m+4)
⇒2n+1=m(13m+4)⇒2n+1=m(13m+4)⇒n=13m2+4m−12⇒n=13m2+4m−12
Vậy.....
chúc bạn hok tốt
đặt \(\hept{\begin{cases}n+5=x^2\\n+30=y^2\end{cases}\left(x;y\in N;x,y>0\right)}\)
\(\Leftrightarrow y^2-x^2=25\Leftrightarrow\left(y-x\right)\left(y+x\right)=1.25\)(vì x,y thuộc N, x,y>0)
lại có y-x<y+x nên \(\hept{\begin{cases}y+x=1\\y+x=25\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=12\end{cases}}}\)
thay vào ta được n=139 thỏa mãn
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
đơn con nhà bà giản
đặt A=a2
xét n=2k
=>32k+19=a2
=>(a-3k)(a+3k)=19
từ đó thì dễ dàng tìm được k;a=>n=...
xét n=2k+1
=>3n+19=9k.3+19
9 đồng dư với 1(mod 4)
=>9k đồng dư với 1(mod 4)
=>9k.3 đồng dư với 3(mod 4)
=>A đồng dư với 2(mod 4)
mà A là số chính phương=>A chia 4 dư 0;1
=>A không tồn tại khi n=2k+1
KL...
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Giả sử \(n^2+11=a^2\) (\(a\in N\)*, a > n)
<=> (a-n)(a+n) = 11
Mà a-n < a + n
<=> \(\left\{{}\begin{matrix}a-n=1\\a+n=11\end{matrix}\right.< =>\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
KL Vậy n = 5
Ta có : \(n^2+11=m^2\)
\(\Leftrightarrow n^2-m^2=\left(n-m\right)\left(n+m\right)=-11\)
Mà n và m là các số tự nhiên .
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n-m=11\\n+m=-1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-11\\n+m=1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=1\\n+m=-11\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\end{matrix}\right.\)
- Giair lần lượt các TH ta được TH thỏa mãn là :
\(\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=5\\m=6\end{matrix}\right.\)
Vậy n = 5 ...
Gọi \(k^2=26n+17\), tức là \(k^2\) đồng dư 17 (mod 26).
Ta giải phương trình đồng dư này bằng cách cho \(k\) đồng dư 0, cộng trừ 1, ..., cộng trừ 13.
Thì sẽ thấy \(k=26x+11\) hoặc \(k=26x+15\).
Vậy \(n=\frac{\left(26x+11\right)^2-17}{26}\) hoặc \(n=\frac{\left(26x+13\right)^2-17}{26}\) với mọi \(x\) nguyên không âm.