K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

2n+8 chia hết cho n+1

=>2(n+1)-10 chia hết cho n+1

=>10 chia hết cho n+1

=>n+1 thuộc Ư(10)={1;2;5;10;-1;-2;-5;-10}

Ta có bảng:

n+112510-1-2-5-10
n0149-2-3-6-11

 

Vì n là nguyên tố =>n thuộc{-2;-3;-11}

 

8 tháng 10 2018

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.

26 tháng 1 2018

a . n+4\(⋮\)n+1

\(\Rightarrow\)(n+1)+3 \(⋮\)n+1

mà n+1 \(⋮\)n+1 \(\Rightarrow\)3\(⋮\)n+1 hay n+1 \(\in\)ước của 3

ta có bảng sau:

n+1-113-3
n-202-4

vậy n \(\in\)(-2;0;2;-4)

các bài sau cứ làm tưng tự nhé
 

a: Ta có: \(2n+1⋮n+2\)

\(\Leftrightarrow2n+4-3⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

b: Để B là số nguyên thì \(n+3⋮n-2\)

\(\Leftrightarrow n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

c: Để C là số nguyên thì \(3n+7⋮n-1\)

\(\Leftrightarrow3n-3+10⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

5 tháng 11 2023

a) 4n + 7 chia hết cho 2n + 1

⇒ 4n + 2 + 5 chia hết cho 2n + 1

⇒ 2(2n + 1) + 5 chia hết cho 2n + 1

⇒ 5 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(5) (ước dương)

⇒ 2n + 1 ∈ {1; 5}

⇒ n ∈ {0; 2} 

17 tháng 8 2016

a) Xét \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)

Để p/s trên đạt giá trị nguyên thì (n+1) thuộc ư(3)

Bạn tự liệt kê

b) Đặt \(A=\left(n-1\right)\left(n^2+2n+3\right)\)

Vì A là số nguyên tô nên A chỉ có hai ước là 1 và chính nó

Suy ra các trường hợp : \(\begin{cases}n-1=1\\n^2+2n+3=A\end{cases}\) hoặc \(\begin{cases}n-1=A\\n^2+2n+3=1\end{cases}\)

Suy ra n = 2 thỏa mãn đề bài

17 tháng 8 2016

a)n + 4 chia hết cho n + 1

=> n + 1 + 3 chia hết cho n + 1

Do n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1

Mà \(n\in N\Rightarrow n+1\ge1\)

=> \(n+1\in\left\{1;3\right\}\)

=> \(n\in\left\{0;2\right\}\)

b) Ta đã biết số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó

Mà \(n^2+2n+3\ge3\) với mọi n là số tự nhiên

=> n - 1 = 1; n2 + 2n + 3 là số nguyên tố

=> n = 2

Thử lại ta thấy: n2 + 2n + 3 = 22 + 2.2 + 3 = 11, là số nguyên tố, thỏa mãn

Vậy n = 2