Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a⋮b,b⋮c\) => a chia hết cho cả b và c
Mà \(a⋮a\) Do đó a chia cho a,b,c
=> a là [a,b,c]
n2 + 6n = n.(n + 6) là số nguyên tố
- Nếu n là số chẵn thì không tồn tại n
- Nếu n là số lẻ thì :
+) Với n = 1 thì n.(n + 6) = 7, là số nguyên tố
+) Với n > 1 thì n.(n + 6) \(\in\) B(n), là hợp số
Vậy n = 1 thỏa mãn
Gọi d là ƯC nguyên tố của n + 19 và n - 2.
=> n + 19 chia hết cho d
n - 2 chia hết cho d
=> ( n + 19 ) - ( n - 2 ) chia hết cho d
=> 21 chia hết cho d
Mà d là số nguyên tố nhỏ nhất
=> d = 3
Do n + 19 = ( n - 2 ) + 21 nên nếu n - 2 chia hết cho 3 thì n + 19 chia hết cho 3.
Nên ta chỉ cần tìm n để n - 2 chia hết cho 3
Với n = 3k + 2 ( k \(\in\)N* ) thì \(\frac{n+19}{n-2}\) rút gọn được.
Còn với n \(\ne\)3k + 2 ( k \(\in\)N* ) hay n có dạng 3k hoặc 3k+1 thì \(\frac{n+19}{n-2}\) tối giản.
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
Ta có: \(n^3-n^2+n-1\)
\(=n^2\left(n-1\right)+\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2+1\right)\)
Ta thấy \(n-1< n^2+1\) nên điều kiện cần để số trên là nguyên tố là: \(n-1=1\Rightarrow n=2\)
\(\Rightarrow n^3-n^2+n-1=5\) thỏa mãn
G/S ngược lại \(n-1\ne1\) thì \(n^2+1\ne1\)
\(\Rightarrow\left(n-1\right)\left(n^2+1\right)\) không là số nguyên tố (vô lý)
Vậy n = 2
Với n = 2
=> n3 - n2 + n - 1 = 5 (tm)
Với n > 2
=> \(\orbr{\begin{cases}n=2k+1\\n=2k\end{cases}}\left(k\inℕ^∗\right)\)
Với n = 2k + 1 khi đó : n3 - n2 + n - 1
= (n3 - n2) + (n - 1)
= n2(n - 1) + (n - 1)
= (n - 1)(n2 + 1)
= (2k + 1 - 1)[(2k + 1)2 + 1]
= 2k[(2k + 1)2 + 1] \(⋮\)2 (loại)
Với n = 2k
=> n3 - n2 + n - 1
= (n - 1)(n2 + 1)
= (2k - 1)[(2k)2 + 1]
= (2k - 1)(4k + 1) \(⋮2k-1\)(loại)
=> n = 2 là giá trị cần tìm
với n=1 thì n^2+6n=7(TM)
với \(n\ge1\)thì n^2 chia hết cho n,6n chia hết cho n nên n^2+6n chia hết cho n (KTM)
vậy n=1