\(\in\)N sao cho n2+6n là só nguyên tố.

Trình bày đầy đủ nhé thank...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

với n=1 thì n^2+6n=7(TM)

với \(n\ge1\)thì n^2 chia hết cho n,6n chia hết cho n nên n^2+6n chia hết cho n (KTM)

vậy n=1

11 tháng 11 2018

Ta có: \(a⋮b,b⋮c\) => a chia hết cho cả b và c

Mà \(a⋮a\) Do đó a chia cho a,b,c

=> a là [a,b,c]

8 tháng 10 2015

n2 + 6n = n.(n + 6) là số nguyên tố

- Nếu n là số chẵn thì không tồn tại n

- Nếu n là số lẻ thì :

+) Với n = 1 thì n.(n + 6) = 7, là số nguyên tố

+) Với n > 1 thì n.(n + 6) \(\in\) B(n), là hợp số

Vậy n = 1 thỏa mãn

3 tháng 11 2016

Gọi d là ƯC nguyên tố của n + 19 và n - 2.

=> n + 19 chia hết cho d

     n - 2 chia hết cho d

=> ( n + 19 ) - ( n - 2 ) chia hết cho d

=> 21 chia hết cho d 

Mà d là số nguyên tố nhỏ nhất

=> d = 3

Do n + 19 = ( n - 2 ) + 21 nên nếu n - 2 chia hết cho 3 thì n + 19 chia hết cho 3.

Nên ta chỉ cần tìm n để n - 2 chia hết cho 3

Với n = 3k + 2 ( k \(\in\)N* ) thì \(\frac{n+19}{n-2}\) rút gọn được.

Còn với n \(\ne\)3k + 2 ( k \(\in\)N* ) hay n có dạng 3k hoặc 3k+1 thì \(\frac{n+19}{n-2}\) tối giản.

3 tháng 11 2016

/surrender

Tớ chưa học nên tớ không biết Z là cái j.

nhé

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)

25 tháng 1 2021

Ta có: \(n^3-n^2+n-1\)

\(=n^2\left(n-1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2+1\right)\)

Ta thấy \(n-1< n^2+1\) nên điều kiện cần để số trên là nguyên tố là: \(n-1=1\Rightarrow n=2\)

\(\Rightarrow n^3-n^2+n-1=5\) thỏa mãn

G/S ngược lại \(n-1\ne1\) thì \(n^2+1\ne1\)

\(\Rightarrow\left(n-1\right)\left(n^2+1\right)\) không là số nguyên tố (vô lý)

Vậy n = 2

25 tháng 1 2021

Với n = 2 

=> n3 - n2 + n - 1 = 5 (tm)

Với n > 2 

=> \(\orbr{\begin{cases}n=2k+1\\n=2k\end{cases}}\left(k\inℕ^∗\right)\)

Với n = 2k + 1 khi đó : n3 - n2 + n - 1 

=  (n3 - n2) + (n - 1)

= n2(n - 1) + (n - 1)

= (n - 1)(n2 + 1)

= (2k + 1 - 1)[(2k + 1)2 + 1]

= 2k[(2k + 1)2 + 1] \(⋮\)2 (loại)

Với n = 2k 

=> n3 - n2 + n - 1 

= (n - 1)(n2 + 1)

= (2k - 1)[(2k)2 + 1]

= (2k - 1)(4k + 1) \(⋮2k-1\)(loại)

=> n = 2 là giá trị cần tìm