Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)
\(\Rightarrow-4< n< 2\)
NHững câu còn lại lm tưng tự!
a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{\text{2. (4n+3) + 187}}{\text{4n + 3 }}=2+\frac{187}{4n+3}\)
⇒187 ÷ 4n + 3⇒4n + 3 ∈ Ư (187) = {17;11;187}
+ 4n + 3 = 11 => n = 2
+ 4n +3 = 187 => n = 46
+ 4n + 3 = 17 => 4n = 14 ( loại )
Vậy n = 2 và 46
B) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A ≠ 187
=> n ≠ 11k + 2 (k ∈ N)
=> n ≠ 17m + 12 (m ∈ N )
c) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61
a ) Để A có giá trị là số tự nhiên
=> A thuộc N
=> 8n + 193 \(⋮\)4n + 3
=> 8n + 6 + 187 \(⋮\)4n + 3
=> 2 . ( 4n + 3 ) + 187 \(⋮\)4n + 3 mà 2 . ( 4n + 3 )\(⋮\)4n + 3 => 187 \(⋮\)4n + 3
=> 4n + 3 thuộc Ư ( 187 ) = { - 17 ; - 11 ; - 1 ; 1 ; 11 ; 17 }
Lập bảng tính giá trị n :
4n + 3 | - 17 | - 11 | - 1 | 1 | 11 | 17 |
n | - 5 | / | - 1 | / | 2 | / |
Thử các giá trị của n ta thấy chỉ có mỗi giá trị n = 2 thì thỏa mãn đề bài
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{n\left(n+1\right)}=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{n}-\frac{2}{n+1}\)
Tới đây dễ rồi bạn rút gọn rồi tìm n
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
Ta có: n+3: n+1 => (n+1) +2 : n+1
Vì (n+1):(n+1) => Để (n+1)+2 : n+1 => 2 chia hết cho (n+1)
=> n+1 thuộc Ư (2) => n+1 thuộc 1;2
Ta có bảng:
n+1
Vậy n=0;1
Nhớ k cho mình nha
Vì \(\frac{n+3}{n+1}\)là số tự nhiên
\(\Rightarrow\)n+3 \(⋮\)n+1
\(\Rightarrow\)(n+1)+2 \(⋮\)n+1
Mà n+1 \(⋮\)n+1
\(\Rightarrow\)Để (n+1)+2 \(⋮\)n+1 thì 2 \(⋮\)n+1
\(\Rightarrow\)n+1 \(\inƯ\left(2\right)\)
\(\Rightarrow\)n+1\(\in\){1;2}
\(\Rightarrow\)n\(\in\){0;1}
Vậy n\(\in\){0;1}