\(\in\)N để:

a 6+n \(⋮\)3

b n+3 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

a) 6 + n chia hết cho 3 

áp dụng tính chất chia hết của 1 tổng 

=> n chia hết cho 3

=> n thuộc B(3) = { 0; 3; 6; 9 ; 12 ; .... }

b) Nhắn tin r

c) n + 5 = ( n + 2 ) + 3

=> ( n + 2 ) + 3 chia hết cho ( n + 2 )

áp dụng tính chất chia hết của một tổng

=> 3 chia hết cho n + 2 

=> n + 2 thuộc Ư(3) = { 1; 3 }

=> n = { -1 ; 1 }

19 tháng 10 2017

a)nE các {0;3;6;8}

20 tháng 2 2018

\(b,n+4⋮n+2\)

\(\Rightarrow n+2+2⋮n+2\)

       \(n+2⋮n+2\)

\(\Rightarrow2⋮n+2\)

\(\Rightarrow n+2\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0\right\}\) mà n thuộc N

=> n = 0

d, \(2n+6⋮n+3\)

\(\Rightarrow2\left(n+3\right)⋮n+3\)

        \(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\)

\(\Rightarrow\) n = bao nhiêu cx đc miễn là n thuộc N

20 tháng 2 2018

a)n={-3;-1;-5;0}

b)n={-3;-1;-5;0}

c)n=rỗng

d)n=rỗng

a) => n-1+3 chia hết n-1

Mà n-1 chia hết n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ước của 3

........

b)=> 2(n+1) +5 chia hết n+1

mà 2(n+1) chia hết n+1

=> 5 chia hết cho n+1

=> n+1 thuộc ước của 5

.......

3 tháng 3 2020

a,Ta có :\(n+2⋮n-1\)

\(=>n-1+3⋮n-1\)

Do \(n-1⋮n-1\)

\(=>3⋮n-1\)

\(=>n-1\inƯ\left(3\right)\)

\(=>n-1\in\left\{-3;-1;1;3\right\}\)

\(=>n\in\left\{-2;0;2;4\right\}\)

b,\(2n+7⋮n+1\)

\(=>2.\left(n+1\right)+5⋮n+1\)

Do \(2.\left(n+1\right)⋮n+1\)

\(=>5⋮n+1\)

\(=>n+1\inƯ\left(5\right)\)

\(=>n+1\in\left\{-5;-1;1;5\right\}\)

\(=>n\in\left\{-6;-2;0;4\right\}\)

17 tháng 2 2020

Để phân số \(\frac{3}{n}\)tối giản thì 3\(⋮̸\)n

\(\Rightarrow\)n bằng 3k+1 hoặc bằng 3k+2 với k\(\in\)N*

Vậy n bằng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0.

Các phần sau tương tự.

(Đây là bài tớ tự nghĩ để làm nên trình bày có thể không rõ lắm, nếu thấy vậy bạn bảo nhé!)

3 tháng 3 2020

\(a,\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)

Để \(n+5⋮n+2\) thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét bảng ( tự xét nha )

KL..

\(b,\frac{2n+3}{n-2}=\frac{2\left(n-2\right)+7}{n-2}=2+\frac{7}{n-2}\)

Giải các ý khác tương tự như trên

3 tháng 3 2020

Ta có n+5=n+2+3

Để n+5 chia hết cho n+2 thì n+2+3 chia hết cho n+2

Mà n thuộc n => n+2 thuộc N

=> n+2 thuộc Ư (5)={1;5}
Nếu n+2=1 => n=-1 (ktm)

Nếu n+1=5 => n=4(tm)

Vậy n=4 thì n+5 chia hết cho n+2

b) Ta có 2n+3=2(n-2)+7

Để 2n+3 chia hết cho n-2 thì 2(n-2)+7 chia hết cho n-1

n thuộc N => n-1 thuộc N

=> n-1 thuộc Ư (7)={1;7}

Nếu n-1=1 => n=2(tm)

Nếu n-1=7 => n=8 (tm)

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

17 tháng 4 2017

Câu 1 : thiếu đề

Câu 2 :

Vì : \(4n-3⋮2n-1\)

Mà : \(2n-1⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)⋮2n-1\)

\(\Rightarrow4n-2⋮2n-1\)

\(\Rightarrow\left(4n-3\right)-\left(4n-2\right)⋮2n-1\)

\(\Rightarrow4n-3-4n+2⋮2n-1\)

\(\Rightarrow-1⋮2n-1\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow2n\in\left\{0;2\right\}\Rightarrow n\in\left\{0;1\right\}\)

Vậy \(n\in\left\{0;1\right\}\)

17 tháng 4 2017

DDeer A cos gias trij nguyeen thif:

n+3 \(⋮\) 2n -2

=> 2, (n+3) \(⋮\) 2n - 2

=> 2n +6 \(⋮\) 2n - 2

=> (2n-2).8 \(⋮\) 2n -2

=> 8\(⋮\) 2n -2

Vì 2n - 2 là số chẵn và 2n -2 > -2

=> 2n - 2 \(\in\) {2; -2; 4; 8}

=> 2n \(\in\) {4; 0; 6; 10}

=> n \(\in\) {2; 0; 3; 5}

Còn lại ta có n = 5 thì \(A=\dfrac{n+3}{2n-2}\) (không có giá trị nguyên)