Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n -n +2 2 2n+1 n -2n -n 2 -2n +2 -1 2n +1 3
\(\frac{2n^2-n+2}{2n+1}=\left(n-1\right)+\frac{3}{2n+1}\)
Để \(\left(2n^2-n+2\right)\)chia hết \(\left(2n+1\right)\)thì \(3\)chia hết \(2n+1\)
\(\Rightarrow2n+1\)là ước của 3.
mà -1 ; 1; -3 ; 3 là ước của 2
\(\cdot2n+1=-1\Rightarrow n=-1\)(nhận)
\(\cdot2n+1=1\Rightarrow n=0\)(nhận)
\(\cdot2n+1=-3\Rightarrow n=-2\)(nhận)
\(\cdot2n+1=3\Rightarrow n=1\)(nhận)
Vậy \(n=-2;-1;0;1\)thi \(2n^2-n+2\)chai hết cho 2n +1.
2n² - n + 2. │ 2n + 1
2n² + n....... ├------------
------------------ I n - 1
.......-2n + 2
.......-2n - 1
_____________
3
Để chia hết thì: 3 phai chia hết cho ( 2n + 1)
hay (2n + 1) la ước của 3
Ư(3) = {±1 ; ±3}
______________________________
+) 2n + 1 = 1 <=> n = 0
+) 2n + 1 = -1 <=> n = -1
+) 2n + 1 = 3 <=> n = 1
+) 2n + 1 = -3 <=> n = -2
Vậy n ∈{0;-2 ; ±1}
tk cho mk nha $_$
2n^2-n+2 chia hết cho 2n+1
<=> (2n^2+n)-(2n+1)+3 chia hết cho 2n+1
<=> (2n+1).(n-1)+3 chia hết cho 2n+1
<=> 3 chia hết cho 2n+1 [ vì (2n+1).(n-1) chia hết cho 2n+1 ]
Đến đó bạn dùng quan hệ ước bội mà giải nha
Tk mk nha
ta có:
\(A=2n^2-n+2=2n^2+n-2n-1+3\)
\(=n\left(2n+1\right)-\left(2n+1\right)+3\)
\(=\left(n-1\right)\left(2n+1\right)+3\)
để \(A⋮2n+1\)thì\(3⋮2n+1\)
\(\Leftrightarrow2n+1\in U_{\left(3\right)}=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow2n\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;-2;1\right\}\)
VẬY...
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)
2n2 - n + 2 chia hết cho 2n + 1
=>2n2 +n - 2n + 2 chia hết cho 2n + 1
=>n.(2n + 1) - 2n + 2 chia hết cho 2n + 1
=> 2n + 1 + 1 chia hết cho 2n + 1
=> 1 chia hết cho 2n+1
=> \(\hept{\begin{cases}2n+1=1\\2n+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}n=0\\n=-1\end{cases}}\)