Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi d là ƯC(n; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n⋮d\\2n+3⋮d\end{cases}}}\)
=> ( 2n + 3 ) - 2n chia hết cho d
=> 2n + 3 - 2n chia hết cho d
=> ( 2n - 2n ) + 3 chia hết cho d
=> 3 chia hết cho d
=> d thuộc Ư(3) = { 1 ; 3 }
Ta có : 2n + 3 chia hết cho 3
2n chia hết cho 3
mà (n,3) = 1 nên n chia hết cho 3
=> Khi n = 3k thì ( n, 2n + 3 ) = 3 ( k thuộc N )
=> Khi n \(\ne\)3k thì \(\frac{n}{2n+3}\)tối giản
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A thuộc Z
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n +3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n + 3 = 1 => 2n = -2 => n = -1 (Loại)
2n+3 = -1 => 2n=-4 => n = -2 (Loại)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = -8 => n = -4 (Loại)
\(\Rightarrow n\ne1\) thì A là phân số ( n thuộc N)