Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.
+)Đặt A = n4+8n3+17n2+4n+6
=> A= (n2+4n)2+(n+2)2+2>0
=> A> (n2+4n)2
+)Xét với n = 0 => A= 6 (không thỏa mãn)
Xét hiệu B=(n2+4n+1)2-A
=n4+16n2+1+8n3+2n2+8n-n4-8n3-17n2-4n-6
=n2+4n-5
=(n+2)2-9
TH1:B≤0 <=> -5≤n≤1 hay n∈{-5,-4,-3,-2,-1,1} vì n khác 0(cmt)
ta có A=(n2+4n)2+(n+2)2+2= n2(n+4)2+(n+2)2+2
Vì A là số chính phương nên A≡ 0,1(mod4)và A≡0,1,4(mod 5)
Ta xét với n≡0 (mod 4)=> A≡0+4+2≡2 (mod4) => loại
n≡ 1 (mod 4)=> A≡ 25+ 9+2≡0 (mod4) => chọn
cmtt với n≡3(mod 4)=>A≡0(mod 4)=> chọn
n≡ 2(mod 4) => A≡2(mod4) => loại
Ta xét tiếp với mod 5 với n≡ 0,1,2,3,4 thì chỉ có n≡ 0,1 thỏa mãn
=> n ∈{-5,1}
Từ đây ta thay với n= -5 hay 1 thì (n+2)2-9=0
=>B=0 và A=(n2+4n+1)2
=> n∈{1,-5}
TH2: B>0=> (n2+4n)<A<(n2+4n+1)2
=> không tồn tại số chính phương A
Vậy để n4 + 8n3 + 17n2 + 4n + 6 là số chính phương thì n∈{1,-5}
bạn có câu tl chưa....mình cx k làm đúng
mình tìm đc -6;-1;5
Tham khảo ở đây:
https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn
\(n^2+n+6=a^2\)
\(\Rightarrow4n^2+4n+24=4a^2\)
\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
Theo (1) ta thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)
Từ đó ta tìm được , .
Vậy n=5 là giá trị cần tìm