Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số nguyên tố p khi chia cho 6 có thể dư 1;2; 3; 4; 5
=> p có thể có dạng 6k + 1; 6k + 2; 6k + 3; 6k + 4; 6k + 5
Mà 6k + 2 chia hết cho 2; 6k + 3 chia hết 3; 6k + 4 chia hết cho 2; và p > 3
=> p không thể có dạng 6k + 2; 6k + 3; 6k + 4
Vậy p có thể có dạng 6k + 1; 6k + 5
b) Ta có 8p; 8p + 1; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
Mà p là số nguyên tố; 8 không chia hết cho => 8p không chia hết cho 3
8p + 1 là snt => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2= 2.(4p + 1) => 4p + 1 chia hết cho 3 Hay 4p + 1 là hợp số
Trong câu hỏi tương tự có nhé bạn
a) Vì là số nguyên tố
Nên n - 2 = 1 => n = 3
Hoặc n2 +2n + 2 = 1 (vô lí)
Vậy n - 3
b) (2n + 1)(n + 41) là số nguyên tố
< = > 2n + 1 = 1 => n = 0
n + 41 = 1 (vô lí)
Vậy n = 0
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) Để A là số nguyên thì n-1 chia hết cho n+4
Mà n+4 chia hết cho n+4
=> (n+4)-(n-1) chia hết cho n+4
=> 5 chia hết cho n+4
=> n+4 \(\inƯ\left(5\right)\)
=> n+4 \(\in\){-5;-1;1;5}
=> n\(\in\left\{-9;-5;-3;1\right\}\)
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
A = 3n - 6061/x - 2020
để A nguyên
=> 3x - 6061 chia hết cho x - 2020
=> 3x - 6060 - 1 chia hết cho x - 2020
=> 1 chia hết cho x - 2020
=> x - 2020 thuộc {-1; 1}
=> x - 2020 thuộc {2019; 2021}
+)Theo bài ta có:(n+3).(n+1) là số nguyên tố
=>n+3=1 hoặc n+1=1
=>n+3\(\ne\)n+1
=>n+1=1
=>n =1-1
=>n =0
Vậy n=0 thì (n+1).(n+1) là số nguyên tố
Chúc bn học tốt