Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2+n+17=a^2\left(a\inℕ^∗\right)\)
\(\Leftrightarrow\left(2n\right)^2+4n+68=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2+67=\left(2a\right)^2\)
\(\Leftrightarrow\left(2a\right)^2-\left(2n+1\right)^2=67\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=67\)
Ta thấy : \(a,n\inℕ^∗\) \(\Rightarrow\hept{\begin{cases}2a-2n-1,2a+2n+1\inℕ^∗\\2a+2n+1>2a-2n-1\end{cases}}\)
Do đó ta xét TH sau :
\(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=67\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}n=32\\a=33\end{cases}}\) ( thỏa mãn )
Vậy : \(n=32\) thỏa mãn đề.
Dễ thôi :D
Đặt \(\frac{n\left(2n-1\right)}{26}=q^2\) Khi đó ta được:\(n\left(2n-1\right)=26q^2\)
Do VP chẵn nên n phải là số chẵn, đặt n = 2k ( k tự nhiên )
\(\Rightarrow k\left(4k-1\right)=13q^2\)
Mặt khác \(\left(k;4k-1\right)=1\Rightarrow\hept{\begin{cases}k=a^2\\4k-1=13b^2\end{cases}}\left(h\right)\hept{\begin{cases}k=13b^2\\4k-1=a^2\end{cases}}\) với a, b là các số tự nhiên
\(TH1:k=a^2;4k-1=13b^2\Rightarrow4k=13b^2+1=12b^2+b^2+1\)
Vì vậy \(b^2\equiv3\left(mod4\right)\) vô lý vì b2 phải là số chính phương.
\(TH2:k=13b^2;4k-1=a^2\Rightarrow4k=a^2+1\) tương tự thì không tồn tại.
Vậy không tồn tại n nguyên dương sao cho \(\frac{n\left(2n-1\right)}{26}\) là số chính phương
Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)
<=> (n2 + n)2 + (n2 + n) + 7 = k2
<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2
<=> 4k2 - (2n2 + 2n + 1)2 = 27
<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27
Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1
Lập bảng
2k + 2n2 + 2n + 1 | 27 | 9 | -1 | -3 |
2k - 2n2 - 2n - 1 | 1 | 3 | -27 | -9 |
(tự tính)
Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)
\(=\left(n^2+1\right)\left(2n^2+1\right)\)
Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)
\(\Rightarrow2n^2+1⋮n^2+1\)
\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)
\(\Rightarrow-1⋮n^2+1\)
Mà \(n^2+1>0\)
\(\Rightarrow n^2+1=1\Rightarrow n=0\)
vẫn chưa giải ra thì nói mình
Ta có : \(n^2+2n+12=n^2+2n+1+11=\left(n+1\right)^2+11\) (1)
Ta có \(n^2+2n+12=k^2\) (2)
Từ (1) và (2) ta có :\(\left(n+1\right)^2+11=k^2\)
\(11=k^2-\left(n+1\right)^2\)
<=> \(11=\left(k-n-1\right)\left(k+n+1\right)\)
=>\(k-n-1=1\),\(k+n+1=11\) .... Tính tổng hiệu tương tự là ra