Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là a.
Ta có:
a chia 15 dư 7
=> a - 7 chia hết cho 15 => a - 7 + 15 chia hết cho 15
=> a + 8 chia hết cho 15 (1)
a chia 6 dư 4
=> a - 4 chia hết cho 6
=> a - 4 + 6.2 chia hết cho 6
=> a + 8 chia hết cho 6 (2)
Từ (1); (2) => a + 8 \(\in\)BC( 6; 15 ) => a + 8 \(⋮\)BCNN ( 6 ; 15 )
mà BCNN ( 6; 15 ) = 30
=> a + 8 \(⋮\)30
=> a + 8 - 30 \(⋮\)30
=> a - 22 \(⋮\)30
=> a chia 30 dư 22.
Bạn ơi bài này phải cho thêm điều kiện n thuộc Z
Đặt n^2+2006 = k^2 ( k thuộc N sao)
<=> -2006 = n^2-k^2 = (n-k).(n+k)
<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)
Mà k thuộc N sao nên n-k < n+k
Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006
<==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn
==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
A= n+7/n+5 = n+7-2/n+5= 1+ 2/n+5
=> n thuộc Ư của 2={ -1;-2;1-2}
Mà:n+5=-1 => n=-6
n+5=-2 => n=-7
n+5=1 => n=-4
n+5=2 => n=-3
Vậy n= {-7; -6; -4;-3}
a) \(A=\frac{n+5+2}{n+5}=1+\frac{2}{n+5}\)
\(A\in Z<=>\frac{2}{n+5}\in Z<=>n+5\in U\left(2\right)\)
n+5 | 1 | -1 | 2 | -2 |
n | -4 | -6 | -3 | -7 |
Vậy A thuộc Z <=> n =-4;-6;-3;-7
A đạt GTLN <=> n=-3
Lời giải:
Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$
Khi đó:
$(n+2014)-(n+1995)=b^2-a^2$
$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$
Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$
Suy ra $b+a=19; b-a=1$
$\Rightarrow b=10$
$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Đặt n^2+2006=a^2
(a-n)(a+n)=2006
Vì (a-n)+((a+n)=2a là số chẵn.mặt # a và n cùng tính chẵn lẻ mà 2006 chẵn.
=> a và n cùng tính chẵn.
=> (a-n)(a+n) chia hết cho 4 mà 2006 k chia hết cho 4
nên k tồn tại n