Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
1, Ta có : ĐK \(n\ne1\)
a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)
để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)
Ta có bảng sau:
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
vậy n=-6, 0,2, 8
b, Ta có ĐK \(n\ne-\frac{1}{3}\)
\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)
để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3
c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)
\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)
để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)
kẻ bảng tìm giá trị n
d, ĐK : \(n\ne1\)phân tích:
\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)
để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n
2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)
hay \(2n+3\notinƯ\left(5\right)\)
kẻ bảng tìm giá trị của n
c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất
Và\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất và < 0 vì 5 là số dương
nên\(2n+3=-1\Rightarrow n=-2\)
thay n vào tính A vậy max A =7
để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất
\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0
vậy\(2n+3=1\Rightarrow n=-1\)
thay n vào để tìm min A=-3
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a,để n+1/n-3 nguyên thì n+1 chia hết cho n+3
n+1 chia hết cho n-3 hay n+1-(n-3) chia hết cho n-3
suy ra 4 chia hết cho n-3
suy ra n-3 thuộc ước của 4
suy ra n-3=1 or n-3=3
suy ra n=4 or n=6
a) \(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để phân số có giá trị nguyên => \(\frac{4}{n-3}\)có giá trị nguyên
=> 4 chia hết cho n - 3 => n - 3 thuộc Ư(4) = { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Vậy n thuộc các giá trị trên
b) \(\frac{8n+21}{4n+3}=\frac{2\left(4n+3\right)+15}{4n+3}=2+\frac{15}{4n+3}\)
Để phân số có giá trị nguyên => \(\frac{15}{4n+3}\)có giá trị nguyên
=> 15 chia hết cho 4n + 3 => 4n + 3 thuộc Ư(15) = { -15 ; -5 ; -3 ; -1 ; 1 ; 3 ; 5 ; 15 }
4n+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -9/2 | -2 | -3/2 | -1 | -1/2 | 0 | 1/2 | 3 |
n thuộc Z => n = { -2 ; -1 ; 0 ; 3 }
c) \(\frac{2n+5}{2n-1}=\frac{2n-1+6}{2n-1}=1+\frac{6}{2n-1}\)
Để phân số có giá trị nguyên => \(\frac{6}{2n-1}\)có giá trị nguyên
=> 6 chia hết cho 2n - 1 => 2n - 1 thuộc Ư(6) = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
2n-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5/2 | -1 | -1/2 | 0 | 1 | 3/2 | 2 | 7/2 |
n thuộc Z => n = { -1 ; 0 ; 1 ; 2 }
Cái này là cùng 1 bài hay là 2 phần khác nhau ?
Ban thieu dieu kien n la so nguyen hoac so tu nhien nhe.
\(\frac{4n-17}{n-1}\)la so nguyen
=> 4n-17 \(⋮\)n-1
=> 4(n-1) -13\(⋮\)n-1
Ma 4(n-1)\(⋮\)n-1
=> n-1\(\in\)Ư(13)={+-1;+-13}
Den day ban tu ke bang nhe
Câu b bạn lam tt nhe