Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
*kí hiệu thuộc vs ước bạn tự viết nha*
b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html
a, ( 4n - 5 ) chia het cho ( 2n - 1 )
=> ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )
=>. ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )
=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)
Vi ( 2n-1) chia het cho ( 2n - 1 )
=> 3 chia het cho ( 2n - 1 )
=> 2n - 1 thuoc U(3)
=> 2n - 1 thuoc { 1; 3}
=> 2n thuoc { 0 ; 2 }
=> n thuoc { 0 ; 1 }
Vay n thuoc { 0; 2 }
Phan b, ban lm tuong tu nha !
Tham khao nha !
![](https://rs.olm.vn/images/avt/0.png?1311)
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8
10n + 2 = 10n - 5 + 7 = ( 10n - 5 ) + 7 = 5( 2n - 1 ) + 7
Ta có 5( 2n - 1 ) chia hết cho ( 2n - 1 )
Để ( 10n + 2 ) chia hết cho ( 2n - 1 )
thì 7 phải chia hết cho ( 2n - 1 )
hay ( 2n - 1 ) ∈ Ư(7) = { ±1 ; ±7 }
Vậy n ∈ { -3 ; 0 ; 1 ; 4 }