Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n - 5 chia hết cho n2 + 3
=> n.(n - 5) chia hết cho n2 + 3
=> n2 + 3 - 5n - 3 chia hết cho n2 + 3
=> n2 + 3 - (5n + 3) chia hết cho n2 + 3
Do n2 + 3 chia hết cho n2 + 3 => 5n + 3 chia hết cho n2 + 3
Mà theo đề bài, n - 5 chia hết cho n2 + 3 => 5.(n - 5) chia hết cho n2 + 3
=> 5n - 25 chia hết cho n2 + 3
=> (5n + 3) - (5n - 25) chia hết cho n2 + 3
=> 5n + 3 - 5n + 25 chia hết cho n2 + 3
=> 28 chia hết cho n2 + 3
Mà n2 + 3 > hoặc = 3 => n2 + 3 thuộc {4 ; 7 ; 14 ; 28}
=> n2 thuộc {1 ; 4 ; 11; 25}
=> n2 thuộc {1 ; 4 ; 25}
=> n thuộc {1 ; -1 ; 2 ; -2 ; 5 ; -5}
Thử lại ta thấy giá trị n = -1; n = 2; n = -5 vô lí
Vậy n thuộc {1 ; -2 ; 5}
+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)
=> 3n +4 chia hết cho 3n-3
=> => 3n+4 chia hết cho 3n+4 -7
=> 7 chia hết cho 3n + 4
=> 3n+4 thuộc ước 7 = +- 7, +-1
=> 3n=.............
n=.....
Ta có: 3n+4
=3n-3 +7
Ta thấy:3n-3 chia hết cho n-1=)1 cũng chia hết cho n-1 mà nEN
(=) n-1=0 =) n=1
Vậy n=1
*lưu ý: E là thuộc
1) Ta có: \(n^2+n+17=n.\left(n+1\right)+17\)
- Để \(n^2+n+17⋮n+1\)\(\Rightarrow\)\(n.\left(n+1\right)+17⋮n+1\)mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow\)\(17⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(17\right)\in\left\{\pm1;\pm17\right\}\)
- Ta có bảng giá trị:
\(n+1\) | \(-1\) | \(1\) | \(-17\) | \(17\) |
\(n\) | \(-2\) | \(0\) | \(-18\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-18,-2,0,16\right\}\)
2) Ta có: \(9-n=\left(-n+3\right)+6=-\left(n-3\right)+6\)
- Để \(9-n⋮n-3\)\(\Rightarrow\)\(-\left(n-3\right)+6⋮n-3\)mà \(-\left(n-3\right)⋮n-3\)
\(\Rightarrow\)\(6⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(n-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(n\) | \(2\) | \(4\) | \(1\) | \(5\) | \(0\) | \(6\) | \(-3\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-3,0,1,2,4,5,6,9\right\}\)
1) n2 + n + 17 = n(n+1) +17 chia hết cho n + 1
=>17 phải chia hết cho n + 1
=> n + 1 thuộc ước 17 ={1;-1;17;-17}
=> n thuộc {0;16;-2;-18}
Vậy có 4 giá trị n thỏa mãn đề bài
2)9-n = 6 -(n-3) chia hết cho n - 3
=> n - 3 thuộc ước 6 = {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {4;2;5;1;6;0;9;-3}
Vậy có 6 giá trị n thỏa mãn đề bài
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}
2n+3=2n-4+7
=2(n-2) +7
vì 2(n-2) chia hết cho n-2 nên để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
=>n-2={-7;-1;1;7}
<=> n={-5;1;3;9}
1) 2x+108 chia hết cho 2x+3
<=> 2x+3+108 chia hết cho 2x+3
<=> 108 chia hết cho 2x+3
=> 2x+3 thuộc Ư(108)
Vì 2x+3 lẻ
=> Ư(108)={1;-1;27;-27}
Với 2x+3=1 <=> 2x=-2 <=> x=-1
Với 2x+3=-1 <=> 2x=-4 <=> x=-2
Với 2x+3=27 <=> 2x=24 <=> x=12
Với 2x+3=-27 <=> 2x=-30 <=> x=-15
Vậy x thuộc {-1;-2;12;-15}
2) x+13 chia hết cho x+1
<=> x+1+12 chia hết cho x+1
<=> 12 chia hết cho x+1
=> x+1 thuộc Ư(12)
Ư(12)={1;-1;2;-2;-4;4;3;-3;12;-12}
Với x+1=1 <=> x=0
Với x+1=-1 <=> x=-2
..............
Vậy x thuộc {0;-2;-3;3;5;-4;-2;-11;13}
a) 2x+ 108\(⋮\) 2x+ 3.
Mà 2x+ 3\(⋮\) 2x+ 3.
=>( 2x+ 108)-( 2x+ 3)\(⋮\) 2x+ 3.
=> 2x+ 108- 2x- 3\(⋮\) 2x+ 3.
=> 95\(⋮\) 2x+ 3.
=> 2x+ 3\(\in\) { 1; 5; 19; 95}.
Ta có bảng sau:
=> x\(\in\){1; 8; 46}.
Vậy x\(\in\){ 1; 8; 46}.
b) x+ 13\(⋮\) x+ 1.
Mà x+ 1\(⋮\) x+ 1.
=>( x+ 13)-( x+ 1)\(⋮\) x+ 1.
=> x+ 13- x- 1\(⋮\) x+ 1.
=> 12\(⋮\) x+ 1.
=> x+ 1\(\in\){ 1; 2; 3; 4; 6; 12}.
Ta có bảng sau:
=> x\(\in\){ 0; 1; 2; 3; 5; 11}.
Vậy x\(\in\){ 0; 1; 2; 3; 5; 11}.
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
Ta có: 3n+5 chia hết cho 3n-1
=> 3n - 1 + 6 chia hết cho 3n - 1
=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết cho 3n - 1
=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }
=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }
Mà chỉ có 3 chia hết cho 3 => n=1
1 bài tương tự nha bn cứ dựa vào đó mà làm
n^2 +3 = (n+1)(n-1) + 4
(n+1)(n-1) chia hết cho n-1 => n^2 +3 chia hết cho n-1 <=> 4 phải chia hết cho n-1
hay n-1 = Ư(4) = 1; -1; 2; -2; 4; -4 => n=...
(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5
nhanh