Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mặt khác: \(2B+3=3^n\)
\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)
Vậy n = 101.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
c) \(\left(\dfrac{1}{2}\cdot x+\dfrac{1}{4}\right)\cdot\left(2x-\dfrac{1}{3}\right)=0\)
\(\dfrac{1}{2}\cdot x+\dfrac{1}{4}=0\)
\(\dfrac{1}{2}\cdot x=0-\dfrac{1}{4}\)
\(\dfrac{1}{2}\cdot x=-\dfrac{1}{4}\)
\(x=-\dfrac{1}{4}\div\dfrac{1}{2}\)
\(x=-\dfrac{1}{2}\)
\(2x-\dfrac{1}{3}=0\)
\(2x=0+\dfrac{1}{3}\)
\(2x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}\div2\)
\(x=\dfrac{1}{6}\)
\(\Rightarrow\) \(x=\) {\(-\dfrac{1}{2};\dfrac{1}{6}\)}
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
\(32^n+16^n=1024\)
\(\Leftrightarrow\left(2^5\right)^n+\left(2^4\right)^n=2^{10}\)
\(\Leftrightarrow2^{5n}.2^{4n}=2^{10}\)
\(\Leftrightarrow2^{4n+5n}=2^{10}\)
\(\Leftrightarrow9n=10\Leftrightarrow n=\frac{10}{9}\)
Ta có : n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1;2;4}
=> n thuộc {2;3;5}
Ta có : n2 + 3 chia hết cho n - 1
\(\Rightarrow\)n2 - 1 + 4 chia hết cho n- 1
\(\Rightarrow\)( n - 1 ) ( n + 1 ) + 4 chia hết cho n - 1
\(\Rightarrow\)4 chia hết cho n - 1
\(\Rightarrow\)n - 1 thuộc Ư (4) = { 1 , 2 , 4 ).
\(\Rightarrow\)n thuộc { 2 , 3 , 5 }
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\left(3^{101}-3\right):2\)
Ta có : \(2A+3=3^{101}\)
\(→n=101\)
~ Ủng hộ nhé ~