![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=1+n^{2017}+n^{2018}\)
Với \(n=1\Rightarrow A=3\)là số nguyên tố
Với \(n>1\)ta có : \(1+n^{2017}+n^{2018}=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)=\left(n^2+n\right)\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
Mà : \(n^{2016}-1=\left(n^3\right)^{672}-1=\left(n^3-1\right)\left[\left(n^3\right)^{671}+\left(n^3\right)^{670}+...+n^3+1\right]⋮n^3-1\)
\(\Rightarrow\)\(\left(n^{2016}-1\right)⋮\left(n^2+n+1\right)\Rightarrow A⋮\left(n^2+n+1\right)\)
Ta lại có : \(1< n^2+n+1< A\)nên A là số nguyên tố
Vậy n = 1 là số nguyên dương duy nhất thỏa mãn điều kiện đề bài
để làm gì đề đâu viết thêm đề mình làm cho
chung tên đăng nhập kb nhé