Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
a) Ta có : n + 5 = (n + 2) + 3
Do n + 2 chia hết cho n + 2
Để (n + 2) + 3 \(⋮\)n + 2 thì 3 \(⋮\)n + 2 => n + 2 \(\in\)Ư(3) = {1; -1; 3; -3}
Với : n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 3 => n = 1
n + 2 = -3 => n = -5
Để n + 5 \(⋮\)n + 2 thì n = {-1; -3; 1; -5}
n+5 chia hêt n+2 =>n-5-n-2 chia hết cho n+2 (do n+2 chia hết cho n+2 nên trừ ra)
=>3 chia hết cho n+2
=>n+2 thuộc {1,-1,3,-3}
=>n thuộc {-1,-3,1,-5}
\(\left(n^3+n\right)-\left(n^2+1\right)+\left(n+8\right)\) chia hết cho n2 +1 khi n +8 chia hết cho n2 +1
=>n+ 8 =0 => n =-8
a) \(=2n^3-n^2+2n^2-n+8n-4+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)
vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok)
2n-1 | 1 | 5 |
n | 1 | 3 |
=> n thuộc (1;3)
b) \(n^3-2n^2+2n^2-4n+4n-8+6=\left(n-2\right)\left(n^2+2n+4\right)+6\)
vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8)
c) \(n^3+n^2+n-4n^2-4n-4+3=n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3=\left(n^2+n+1\right)\left(n-4\right)+3\)
vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=>
cái này xét trường hợp nha
n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại)
th2: \(n^2+n+1=3\Leftrightarrow n^2+n-2=0\Leftrightarrow n^2+2n-n-2=0\Leftrightarrow\left(n+2\right)\left(n-1\right)=0\)
=> n=-2(loại) hoặc n=1
\(n^3+n-n^2-1+n+8=\left(n^2+1\right)\left(n-1\right)+n+8\)nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
a) = 2n 3 − n 2 + 2n 2 − n + 8n − 4 + 5 = 2n − 1 n 2 + n + 4 + 5 vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok) 2n-1 1 5 n 1 3 => n thuộc (1;3) b) n 3 − 2n 2 + 2n 2 − 4n + 4n − 8 + 6 = n − 2 n 2 + 2n + 4 + 6 vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8) c) n 3 + n 2 + n − 4n 2 − 4n − 4 + 3 = n n 2 + n + 1 − 4 n 2 + n + 1 + 3 = n 2 + n + 1 n − 4 + 3 vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=> cái này xét trường hợp nha n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại) th2: n 2 + n + 1 = 3⇔n 2 + n − 2 = 0⇔n 2 + 2n − n − 2 = 0⇔ n + 2 n − 1 = 0 => n=-2(loại) hoặc n=1 n 3 + n − n 2 − 1 + n + 8 = n 2 + 1 n − 1 + n + 8 nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
hơi rối một ít k cho mk nha
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)
Ai nhanh mk k!
khó quá mình mới lớp 6