Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
Ta có :
n chia 5 dư 1 => n + 4 chia hết cho 5
n chia 8 dư 4 => n + 4 chia hết cho 8
=> n + 4 thuộc BC(5;8)
Ta lại có :
5 = 5
8 = 23
=> BCNN (5;8) = 5 . 23 = 40
=> BC (5;8) = B(40) = {0 ; 40 ; 80 ; ...}
=> \(a+4\in\left\{0;40;80;...\right\}\)
=> \(a\in\left\{36;76;...\right\}\)
mà a nhỏ nhất
=> a = 36
Nhớ li-ke cho mình nhé!
ta thay so tu nhien n chia cho 8 du 5 va chia 31 du 26 nen ta co
n=8k+5 va =31g+26
=>8k+5=31g+26
=>8k+10=31g+31
=>2(4k+5)=31(g+1)
vi 2 va 31 co uoc chung lon nhat la 1 nen 4k+5 chia het cho 31 ma k la so tu nhien va k nho nhat nen k=22
=>n=181
n+9 chia hết cho 5 và 7
=> n nhỏ nhất khi n+9=BSCNN(5;7)=35 => n=26