K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2023

2 Tìm n

a, n+6 chia hết cho n+1/ =n+1+5 chia hết cho n+1/ =(n+1).5 chia hết cho n+1/ suy ra n+1 thuộc ước (5)

Để n+1 chia hết cho n+1

suy ra 5 chia hết cho n+1/ Suy ra n thuộc Ư(5)=(-1; -5; 1; 5)

Ta lập bảng

n+1                -1                     -5                             1                        5

n                    -2                     -6                              0                       4

suy ra: n thuộc (-2; -6; 0; 4)

thử lại đi xem coi đúng ko nhé

             

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}

8 tháng 10 2016

a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3

=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}

b/  \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5

=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}

Các câu còn lại làm tương tự

13 tháng 5 2018

1) n=33

2) n=2

3) n=10

13 tháng 5 2018

1)n=33

2)n=2

3)n=10

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}

2 tháng 2 2017

câu 1 :

a, n + 2  \(⋮\)n -1

=> ( n- 1 ) + 3  \(⋮\)n -1

=> 3  \(⋮\)n -1

=> n - 1 \(\in\)Ư(3) = { - 3 ; - 1 ; 1 ; 3 }

=> n \(\in\){ -2; 0 ; 2 ; 4 }

vậy:  n \(\in\){ -2; 0 ; 2 ; 4 }

b, n - 7 \(⋮\)n + 3 

=> ( n + 3 ) - 4  \(⋮\)n + 3 

=> 4  \(⋮\)n + 3 

=> n + 3 \(\in\)Ư ( 4 ) = { - 4 ;- 2 ; - 1; 1 ; 2 ;4 }

=> n \(\in\){ -1;1;2;4;5;7}

vậy: n \(\in\){ -1;1;2;4;5;7}

c, ta có: 2n - 1 \(⋮\)n + 2

=> 2.( n + 2) + 3  \(⋮\)n + 2

=> 3  \(⋮\)n + 2

=> n + 2 \(\in\)Ư(3)=  { - 3;-1;1;3 }

=> n \(\in\){ -1 ; 1 ; 3 ; 5 }

vậy:  n \(\in\){ -1 ; 1 ; 3 ; 5 }

câu 2:

1, ta có: ( x - 2 ) . ( 5y + 1 ) = 12

=>  x - 2 và  5y + 1  \(\in\)Ư(12) = { - 12;-6;-4;-3;-2;-1;1;2;3;4;6;12 }

vì 5y + 1 chia 5 dư 1 => 5y + 1 \(\in\){ -4 ; 1 ; 6 }

ta có bảng: 

5y + 1-416
x-2-3122
5y-505
x-1144
y-101

vậy có 3 cặp x, y cần tìm có trong bảng.

2, ta có: ( 8 - x ) . ( y + 1 ) = 20

=> 8 - x và y + 1 \(\in\)Ư(20) = { -20 ; -10 ; -5 ; - 4 ; -2 ; -1 ; 1 ; 2 ; 4 ; 5 ; 10 ; 20 }

ta có bảng : 

8 - x-20-10-5-4-2-112451020
y + 1-1-2-4-5-10-2020105421
x281813121097643-2-12
y-2-3-5-6-11-211994310
             

 vậy: có 12 cặp x,y cần tìm có trong bảng

7 tháng 2 2018

a) Ta có :

\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Do đó :

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=-1\Rightarrow n=-1+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=-3\Rightarrow n=-3+2=-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

7 tháng 2 2018

a, n + 1 chia hết cho n - 2

\(\Rightarrow n-2+3\) chia hết cho \(n-2\)

\(\Rightarrow\) 3 chia hết cho n - 2

\(\Rightarrow n-2\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)