\(2^2\cdot3^{2\left(n-1\right)}=\left(2n\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

a: \(5^3\cdot25^n=5^{3n}\)

\(\Leftrightarrow5^{3n}=5^3\cdot5^{2n}\)

=>3n=2n+3

hay n=3

b: \(a^{\left(2n+6\right)\left(3n-9\right)}=1\)

=>(2n+6)(3n-9)=0

=>n=-3 hoặc n=3

c: \(\dfrac{1}{3}\cdot3^n=7\cdot3^2\cdot3^4-2\cdot3^n\)

\(\Leftrightarrow3^n\cdot\dfrac{1}{3}+3^n\cdot2=7\cdot3^6\)

\(\Leftrightarrow3^n=3^7\)

hay n=7

15 tháng 8 2018

a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)

\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)

b.Tách tương tự nha

15 tháng 8 2018

\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)

vậy với mọi x thuộc N đều t/m

b) tương tự nha

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

23 tháng 9 2017

a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)

\(5x+1=\pm\dfrac{6}{9}\)

+) \(5x+1=\dfrac{6}{9}\)

\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{9}\)

\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)

+) \(5x+1=\dfrac{-6}{9}\)

\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{3}\)

\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)

vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)