Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A có số số hạng là (n-1):1+1=n( số hạng)
áp dụng công thức tính tổng dãy số: [(số đầu + số cuổi) x số các số hạng] : 2
ta dc A= 1 +2+3+...+n=[(n+1) x n] chia 2 ( dcpcm)
nhớ tích m=nha
2+4+6+...+198+200 có : (200-2):2+1=100 (số)
tổng: (200+2).100:2=10100
=> n.(n+1)=10100
=> n.(n+1)=100.101
=> n=100
số số hạng :
\(\left(200-2\right):2+1=100\)
\(n+1=\frac{\left(200+2\right).100}{2}\)
\(n+1=10100\)
\(n=10099\)
a) \(\frac{1}{9}\cdot3^4\cdot3^n=3^7\)
\(\Leftrightarrow\frac{1}{3^2}\cdot3^4\cdot3^n=3^7\)
\(\Leftrightarrow3^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n=5\)
b) \(\left(2n+1\right)^3=343\)
\(\Leftrightarrow2n+1=7\)
\(\Leftrightarrow2n=6\)
\(\Rightarrow n=3\)
c) \(2\cdot16>2^n>4\)
\(\Leftrightarrow2^5>2^n>2^2\)
\(\Rightarrow5>n>2\)
d) \(n^{45}=n\)
\(\Leftrightarrow n^{45}-n=0\)
\(\Leftrightarrow n\left(n^{44}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n^{44}-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=0\\n^{44}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=\pm1\end{cases}}\)
e) \(\left(7n-11\right)^3=2^5\cdot5^2+200\)
\(\Leftrightarrow\left(7n-11\right)^3=1000\)
\(\Leftrightarrow7n-11=10\)
\(\Leftrightarrow7n=21\)
\(\Rightarrow n=3\)
Bài 3:
a: Ta có: \(3x^2=75\)
\(\Leftrightarrow x^2=25\)
hay \(x\in\left\{5;-5\right\}\)
b: Ta có: \(2x^3=54\)
\(\Leftrightarrow x^3=27\)
hay x=3
Bài 2:
b: Ta có: \(30-3\cdot2^n=24\)
\(\Leftrightarrow3\cdot2^n=6\)
\(\Leftrightarrow2^n=2\)
hay n=1
c: Ta có: \(40-5\cdot2^n=20\)
\(\Leftrightarrow5\cdot2^n=20\)
\(\Leftrightarrow2^n=4\)
hay n=2
d: Ta có: \(3\cdot2^n+2^n=16\)
\(\Leftrightarrow2^n\cdot4=16\)
\(\Leftrightarrow2^n=4\)
hay n=2
2n.42-2n+1=26-23
2n.(42-1)=56
2n.15=56
2n=\(\frac{56}{15}\)
Suy ra ko có số nào TM
Tìm n thuộc N các bn nha