\(\frac{a}{b}\)sao cho \(\frac{1}{2}< \frac{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(\Rightarrow\frac{10}{20}< \frac{a}{b}< \frac{12}{20}\)

\(\frac{a}{b}=\frac{11}{20}\)

Nếu muốn tìm nhiều a/b hơn nữa thì tăng MSC của 1/2 và 3/5 lên

26 tháng 2 2020

quy dong 1/2 va 3/5 de chung co mau so giong nhau.

26 tháng 2 2020

là sao

a)\(\frac{-1}{3}< \frac{x}{24}< \frac{-1}{4}\)

=>\(\frac{-8}{24}< \frac{x}{24}< \frac{-6}{24}\)

=>x=-7

Vậy x=-7

b)Bn làm tương tự nha

Chúc bn học tốt

26 tháng 2 2020

đạt ơi tớ cũng vừa gửi giống cậu

26 tháng 2 2020

vì 0 < a < 5 < b; a, b

=> a < b

Vì phân số \(\frac{b}{a}\) có tử lớn hơn mẫu

=>b/a > 1

5 tháng 3 2018

      \(\frac{5}{11}< \frac{a}{b}< \frac{5}{9}\)

=> \(\frac{45}{99}< \frac{a}{b}< \frac{55}{99}\)

=> b = 99 ; a = 46 -> 54

29 tháng 4 2017

Ta có : \(\frac{a}{b}=\frac{15}{21}=\frac{135}{189}\) 

\(\frac{b}{c}=\frac{9}{12}=\frac{3}{4}=\frac{21}{28}=\frac{189}{252}\) 

\(\frac{c}{d}=\frac{9}{11}=\frac{252}{308}\) 

\(\Rightarrow a=135\)

\(b=189\)

\(c=252\)

\(d=308\)

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)