Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
abc - cba = 495
=> (100a + 10b + c) - (100c + 10b + a) = 495
=> 100a + 10b + c - 100c - 10b - a = 495
=> 99a - 99c = 495
=> 99.(a - c) = 495
=> a - c = 495 : 99
=> a - c = 5
Ta tìm được các cặp giá trị (a;c) là: (5;0) ; (6;1) ; (7;2) ; (8;3) ; (9;4)
Lại có: b2 = a.c
Như vậy ta tìm dược 2 cặp giá trị (a;c) thỏa mãn là: (5;0) ; (9;4)
Giá trị b tương ứng là: 0; 6
Vậy số cần tìm là 500 và 964
Số cần tìm là x = a.10+b, với a là chữ số hàng chục, b là chữ số hàng đơn vị, a, b thuộc tập A={0,1,2,...,9}.
theo đề thì x2 = (a+b)3
Các số a,b,x, x2, (a+b)3 đều là những số tự nhiên nên
(a+b) là số chính phương, mà a+b là tổng của 2 số thuộc tập A nên a+b<19 (9+9=18). Vậy a+b thuộc tập {1,4,9,16}.(*)
căn bậc 3 của x phải là số tự nhiên. Trong tập số tự nhiên có 2 chữ số chỉ có 2 số thỏa là 27(=33), 64(43) . Nhận thấy trong 2 số này chỉ có 27 là thỏa (*).
27 là số cần tìm.