Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 5 chữ số cần tìm là x (x ∈ N; 10000 ≤ x ≤ 99999)
Khi thêm 1 vào bên phải số đó ta được số mới là số có 6 chữ số với chữ số hàng đơn vị là 1:
Khi đó số đã cho là số chục và số mới được viết là: 10x + 1.
Khi thêm 1 vào bên trái số đó ta được số mới là số có 6 chữ số với chữ số hàng trăm nghìn là 1
Khi đó số đã cho là số đơn vị và số mới được viết là: 100000 + x.
Theo đề bài ra nếu viết thêm 1 vào bên phải số đó thì được một số lớn gấp ba lần số nhận được khi ta viết thêm 1 vào bên trái số đó nên ta có phương trình
10x + 1 = 3(100000 + x)
⇔ 7x = 299999
⇔ x = 42857 (tmđk)
Vậy số cần tìm là 42857
Gọi số cần tìm là abcde
Ta có abcde1 = 3.1abcde
<=> 10.abcde + 1 = 300000 + 3.abcde
<=> 7.abcde = 299999 <=> abcde = 42857
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(a\ne0,a;b\in N\right)\)
Khi viết thêm một chữ số 2 vào bên trái và 1 chữ số 2 vào bên phải thì được số mới \(\overline{2ab2}\)
Mà số mới hơn số cũ 135 lần nên ta có phương trình :
\(\overline{2ab2}\div\overline{ab}=135\)
\(\Leftrightarrow135\times\overline{ab}=\overline{2ab2}\)
\(\Leftrightarrow135\times\left(10a+b\right)=2000+100a+10b+2\)
\(\Leftrightarrow1350a+135b=2002+100a+10b\)
\(\Leftrightarrow1250a+125b=2002\)
\(\Leftrightarrow125\times\left(10a+b\right)=2002\)
\(\Leftrightarrow\overline{ab}=\frac{2002}{125}\)
\(\Rightarrow\) Sai đề.
Gọi số cần tìm là x(x E N, 10000<=x<=99999)
Nếu thêm chữ số 1 vào bên trái số đó thì số mới là 100000+x.
Nếu thêm chữ số 1 vào bên phải số đó thì số mới là 10x+1.
Vì Nếu thêm chữ số 1 vào bên phải số đó thì số đó gấp 3 lần số mà nếu thêm chữ số 1 vào bên trái nên ta có PT:
10x+1=3(100000+x)
<=>10x+1=300000+3x
<=>7x=299999
<=>x=42857 (TM)
Vậy số cần tìm là 42857
Hai số có tổng bẳng bằng 182 và số lớn hơn số bé 1 chữ số nên số lớn phải là số có 3 chữ số và số bé có 2 chữ số. Gọi số lớn là 1ab thì số bé là ab. Hiệu của hai số là : 1ab - ab = 100 Số lớn cần tìm là: (182 + 100) : 2 = 141 Số bé cần tìm là: 141 - 100 = 41 ĐS: 141 và 41
Gọi số tự nhiên có hai chữ số ban đầu là x. (10 ≤ x ≤ 99; nguyên)
Vậy số tự nhiên cần tìm: 14
Gọi số tự nhiên có hai chữ số cần tìm là \(\overline{ab}\) ( \(\overline{ab}\)\(\in N\)*, 10\(\le\overline{ab}\le99\))
=> Số mới là \(\overline{2ab2}\)
Theo đề ta có:
\(\dfrac{\overline{2ab2}}{\overline{ab}}=153\)
<=> 153.\(\overline{ab}\)=\(\overline{2ab2}\)
<=>153.\(\overline{ab}\)=2000+\(\overline{ab}\).10+2
<=> 143\(\overline{ab}\)=2002
<=> \(\overline{ab}\)=14 (thỏa mãn điều kiện)
Vậy số tự nhiên có hai chữ số cần tìm là 14
Gọi số đó là x ta có pt:
10x+1=3.(100000+x)\(\Rightarrow\)x=42857
Lời giải:
Gọi số cần tìm là $\overline{ab}$ với $a,b$ là STN và $0\leq a,b\leq 9;a\neq 0$.
Theo bài ra ta có:
$\overline{1ab}=5\overline{ab}$
$\Leftrightarrow 100+\overline{ab}=5\overline{ab}$
$\Leftrightarrow 100=4\overline{ab}$
$\Leftrightarrow 25=\overline{ab}$
Vậy số cần tìm là $25$