Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XIN LỖI CHỊ , EM MỚI HỌC ĐẾN LỚP 5
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
a0b = ab* 9
viết thêm chữ số 1
1a0b = a0b * 3
1000+ a0b= a0b *3
1000= a0b*2
a0b = 1000/2 = 500
số cần tìm là : 50
Câu 1:
4 5 8 4 5 8 4 5 8
Câu 2 : ( Làm theo dạng cấu tạo số )
Gọi số đó là abcd
Theo bài cho : abcd x 4 = dcba
=> abcd = dcba : 4
Vì dcba là số có 4 chữ số nên dcba < 10> abcd = dcba : 4 < 10> a ≤≤ 2
Hơn nữa , a phải là chữ số chẵn khác 0 nên a = 2
=> 2bcd x 4 = dcba => d > 2 và kết quả d x 4 có chữ số tận cùng bằng 2
=> d = 8
Vậy ta có: 2bc8 x 4 = 8cb2 => phép nhân 4 x b không có nhớ
Mà theo dấu hiệu chia hết cho 4 => b2 chia hết cho 4 => b có thể bằng 1;3;52;72; 92
=> b chỉ có thể bằng 1
=> 21c8 x 4 = 8c12 => 8000 + 400 + 40c + 32 = 8000 + 100c + 12
=> 420 = 60c => c = 420 : 60 = 7
Vậy số cần tìm là: 2178
a) Gọi số cần tìm là abcd
Nếu nhân số đó vs 4 thì ta dc số ấy viết theo thứ tự ngược lại là:
abcd.4=dcba
=>dcba chia hết cho 4
Vậy a thuộc 0;2;4;6;8} và a<3
=>a=2
dcba=2bcd.4>2000.4=8000
=> d thuộc {8;9}
Mà 4d<10
->d=8
8cd2=2bc8.4
=>8cb2 chia hết cho 4=>b2 chia hết cho 4
=>b thuộc {1;3;5;7;9}
Mà 4b<10
=>b=1
8c12=21c8.4
4c+3 có tận cùng là 1
=> 4c là số chẵn và=8
=>c thuộc {2;7}
Vs c=2: 0 thỏa mãn vì 2128.4e8212
Vs c=7 thỏa mãn vì 2178.4=8712
Vậy abcd=2178