Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
a - 1 sẽ chia hết tất cả
a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 .
ta có thể áp dụng cách tìm BCNN vao bài này .
nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519
nhé !
Lời giải:
Theo bài ra:
$a-2\vdots 3; a-3\vdots 7$
$\Rightarrow a-2+3.2\vdots 3; a-3+7\vdots 7$
$\Rightarrow a+4\vdots 3$ và $a+4\vdots 7$
$\Rightarrow a+4=BC(3,7)\Rightarrow a+4\vdots BCNN(3,7)$
$\Rightarrow a+4\vdots 21$.
Đặt $a=21k-4$ với $k$ tự nhiên.
Vì $a$ chia $11$ dư $9$ nên:
$a-9\vdots 11\Rightarrow 21k-4-9\vdots 11$
$\Rightarrow 21k-13\vdots 11\Rightarrow 21k-13+11.5\vdots 11$
$\Rightarrow 21k+42\vdots 11$
$\Rightarrow 21(k+2)\vdots 11\Rightarrow k+2\vdots 11$
$\Rightarrow k=11m-2$ với $m$ tự nhiên.
Vậy $a=21k-4=21(11m-2)-4=231m-46$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ là số tự nhiên nhỏ nhất sao cho $231m-46\geq 0$
$\Rightarrow m\geq 1$.
$\Rightarrow m$ nhỏ nhất bằng 1.
$\Rightarrow a$ nhỏ nhất bằng: $231.1-46=185$
a chia 9 dư 3
=> (a - 3) chia hết cho 9
Mà 18 chia hết cho 9
=> (a - 3 + 18) chia hết cho 9
=> (a + 15) chia hết cho 9 (1)
a chia 7 dư 6
=> (a - 6) chia hết cho 7
Mà 21 chia hết cho 7
=> (a - 6 + 21) chia hết cho 7
=> (a + 15) chia hết cho 7 (2)
Từ (1) và (2) suy ra :
(a + 15) \(\in\) BC(9; 7)
a nhỏ nhất => a + 15 cũng nhỏ nhất
=> a + 15 = 63
=> a = 63 -15
=> a = 48.
Vậy số tự nhiên a cần tìm là 48.
TICK mình nha ~~
Theo bài ra, ta có:
a nhỏ nhất => a + 15 nhỏ nhất
a chia 9 dư 3 => a + 15 chia hết cho 9
a chia 7 dư 6 => a + 15 chia hết cho 7
Từ 3 điều trên => a + 15 = BCNN(9; 7)
Ta lại có (9; 7) = 1 => BCNN(9; 7) = 9.7 = 63
=> a + 15 = 63
=> a = 48
Vậy...
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a:9 dư 2 suy ra a-2 chia hết cho 9 suy ra (a-2+9) suy ra a+7 chia hết cho 9
a chia 15 dư 8 suy ra a-8 chia hết cho 15 suy ra (a-8+15) suy ra a+7 chia hết cho 15
suy ra a+7 thuộc BCNN(9;15)
9=3^2
15=3.5
thừa số nguyên tố chung và riêng:3;2;5
BCNN(9;15)=3^2.3.5=45
a+7=45 suy ra a=45-7=38
vậy a =38