Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+a\right)^4+\left(x+b\right)^4=c\left(1\right)\)
ĐK: \(c\ge0\)
Đặt: \(y=x+\dfrac{a+b}{2}\Rightarrow\left\{{}\begin{matrix}x+a=y+\dfrac{a-b}{2}\\x+b=y-\dfrac{a-b}{2}\end{matrix}\right.\)
Đặt: \(\dfrac{a-b}{2}=m\)
\(\left(x+a\right)^4+\left(x+b\right)^4=c\)
\(\Leftrightarrow\left(y+m\right)^4+\left(y-m\right)^4=c\)
\(\Leftrightarrow\left[\left(y+m\right)^2+\left(y-m\right)^2\right]^2-2\left(y+m\right)^2.\left(y-m\right)^2=c\)
\(\Leftrightarrow\left(2y^2+2m^2\right)^2-\left(2y^2-2m^2\right)^2=c\)
\(\Leftrightarrow4y^4+8y^2m^2+4m^4-2y^4+4y^2m^2-2m^4=c\)
\(\Leftrightarrow2y^4+12y^2m^2+2m^4=c\)
\(\Leftrightarrow y^4+6y^2m^2+m^4-\dfrac{c}{2}=0\)
Đặt: \(t=y^2\ge0\)
\(\Leftrightarrow t^2+6m^2t+m^4-\dfrac{c}{2}=0\left(2\right)\)
Ta có: \(\Delta'=8m^4+\dfrac{c}{2}\ge0\Rightarrow\) phương trình (2) luôn có nghiệm
Áp dụng định lý Vi-et ta có:
\(t_1+t_2=-6m^2\le0\) \(\forall m\in R\Rightarrow\) Phương trình 2 không thể có 2 nghiệm cùng mang dấu dương
Để phương trình 1 có nghiệm thì \(t_1,t_2\) không thể cùng mang dấu âm
\(\Rightarrow\) Phương trình (2) có 2 nghiệm trái dấu hoặc có ít nhất 1 nghiệm bằng 0
\(\Leftrightarrow m^4-\dfrac{c}{2}\le0\)
\(\Leftrightarrow c\ge2m^4\Rightarrow c\ge2\left(\dfrac{a-b}{2}\right)^4=\dfrac{\left(a-b\right)^4}{8}\)
Vậy với \(c\ge\dfrac{\left(a-b\right)^4}{8}\) phương trình (1) có nghiệm.
Tìm mối liên hệ giữa a, b, c, để phương trình \(\left(b^2+c^2\right)x^2-2acx+a^2-b^2=0\) có nghiệm ?
Phương trình (b2+c2)x2−2acx+a2−b2=0(b2+c2)x2−2acx+a2−b2=0 có nghiệm khi và chỉ khi b2+c2≠0b2+c2≠0 và Δ′≥0Δ′≥0
b2+c2≠0b2+c2≠0 suy ra b và c không đồng thời bằng 0.
Δ′=(−ac)2−(b2+c2)(a2−b2)=a2c2−a2b2+b4−a2c2+b2c2=−a2b2+b4+c2b2=b2(−a2+b2+c2)Δ′≥0⇒b2(−a2+b2+c2)≥0Δ′=(−ac)2−(b2+c2)(a2−b2)=a2c2−a2b2+b4−a2c2+b2c2=−a2b2+b4+c2b2=b2(−a2+b2+c2)Δ′≥0⇒b2(−a2+b2+c2)≥0)
Vì b2≥0⇒−a2+b2+c2≥0⇔b2+c2≥a2b2≥0⇒−a2+b2+c2≥0⇔b2+c2≥a2
Vậy với a2≤b2+c2a2≤b2+c2 thì phương trình đã cho có nghiệm.
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
Vì phương trình đã cho là phương trình bậc hai nên để pt đã cho có nghiệm buộc \(\Delta\)'\(\ge\)0
\(\Leftrightarrow\left(-m-4\right)^2-\left(2m-1\right)\left(5m+2\right)\ge0\)
\(\Leftrightarrow-9m^2+9m+17\ge0\)
Tới đây mình bấm máy tính fx 570vn thì ra còn ai rảnh thì xài bảng xét dấu
\(\Leftrightarrow\dfrac{3-\sqrt{77}}{6}\le m\le\dfrac{3+\sqrt{77}}{6}\)
Vậy với .....
b, Theo hệ thức Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{2\left(m+4\right)}{2m-1}\\P=x_1.x_2=\dfrac{c}{a}=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
c,Từ \(S=\dfrac{2m+8}{2m-1}\Leftrightarrow S=1+\dfrac{9}{2m-1}\\ \Leftrightarrow\left(S-1\right)\left(2m-1\right)=9\\ \Leftrightarrow2m-1=\dfrac{9}{S-1}\\ \Leftrightarrow m=\dfrac{S+8}{2S-2}\)
Thay \(m=\dfrac{S+8}{2S-2}\) vào \(P=\dfrac{5m+2}{2m-1}\) ta được:
\(P=\dfrac{7S+6}{18}\)
\(\Leftrightarrow18P=7S+6\)
Hay \(18x_1x_2=x_1+x_2+6\)
Vậy ....
Đề bài => \(c\ge0\)
Đặt \(t=x+\frac{a+b}{2}\)
=> \(\left(t+\frac{a-b}{2}\right)^4+\left(t-\frac{a-b}{2}\right)^4=c\)
<=> \(2t^4+\frac{6t^2\left(a-b\right)^2}{4}.2+\frac{\left(a-b\right)^4}{8}=c\)
<=> \(2t^4+3t^2\left(a-b\right)^2+\frac{\left(a-b\right)^4}{8}-c=0\left(1\right)\)
Ta có \(\Delta=9\left(a-b\right)^4-\left(a-b\right)^4+8c=8\left(a-b\right)^4+8c\ge0\)
=> \(\left(a-b\right)^4+c\ge0\)luôn đúng \(\forall c\ge0\)
Để PT ban đầu có nghiệm
thì Pt (1) có ít nhất 1 nghiệm dương
=> \(\frac{-3\left(a-b\right)^2+\sqrt{\left(a-b\right)^4+c}}{4}\ge0\)
=> \(c\ge8\left(a-b\right)^4\)
Vậy Pt ban đầu có nghiệm khi \(c\ge8\left(a-b\right)^4\ge0\)