K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

\(A=x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2010\)

\(=x^2-2x\left(y-z+1\right)+\left(y-z+1\right)^2+y^2+2z^2-4y+2yz-6z+2009\)

\(=\left[x-\left(y-z+1\right)\right]^2+y^2-2y\left(2-z\right)+\left(2-z\right)^2-\left(2-z\right)^2+2z^2-6z+2009\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+z^2-2z+2005\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+\left(z-1\right)^2+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+z-1=0\\y-2+z=0\\z-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Vậy \(B_{min}=2004\Leftrightarrow x=y=z=1\)

21 tháng 8 2019

Thanks for answering!!!!!

12 tháng 8 2018

\(D=x^2-2xy+2xy+2y^2+2x-10y+17\)

\(D=\left(x^2+2x+1\right)+2\left(y^2-5y+\frac{25}{4}\right)+\frac{7}{2}\)

\(D=\left(x+1\right)^2+2\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)

Vậy GTNN của D là \(\frac{7}{2}\)khi x = -1; y = \(\frac{5}{2}\)

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

21 tháng 10 2015

= x^2 - 2x + 1 + 2y^2 - 6y + 2014

= ( x - 1 )^2 + 2( y^2 - 2.3/2.y + 9/4 - 9/4 + 1007 )

= ( x - 1 )^2 + 2[ ( y - 3/2 )^2 + 4019/4 ]

Ta có: ( x - 1 )^2 và ( y - 3/2 )^2 > hoặc = 0 với mọi x, y

=> ( x - 1 )^2 và ( y - 3/2 )^2 nhỏ nhất = 0

=> 0 + 2.0 + 2.4019/4 = 4019/2

5 tháng 10 2016

(x-y)2 +(y -2)2 +5 -1-4

GTNN B = 0

( bài toán trg sách bồi dưỡng hsg8)

18 tháng 7 2017

A=\(x^2+y^2-4x+2y+6\)

=\(x^2-4x+4+y^2+2y+1+1\)

=\(\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\)

Vậy Amin =1 \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

16 tháng 7 2020

A = -2x2 - y2 + 2xy + 10x - 6y + 2020

A = -(2x2 + y2 - 2xy - 10x + 6y - 2020)

A = -[(x2 - 2xy + y2) - 6(x - y) + 9 + (x2 - 4x + 4) - 2033)

A = -[(x - y - 3)2 + (x - 2)2] + 2033 < = 2033

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-3=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-3\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=-1\\x=2\end{cases}}\)

Vậy MaxA = 2033 khi  x = 2 và y = -1

16 tháng 7 2020

B = 150 - x2 + 2xy - 2y2 + 8x - 2y

B = -(x2 - 2xy + 2y2 - 8x + 2y - 150)

B = -[(x2 - 2xy + y2) - 8(x - y) + 16 + (y2 - 6y + 9) - 175]

B = -(x - y - 4)2 - (y - 3)2 + 175 \(\le\)175 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-4=0\\y-3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y+4\\y=3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=3\end{cases}}\)

Vậy MaxB = 175 khi x = 7 và y = 3