Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)
Áp dụng BĐT Buniacoxki ta có
\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)
=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)
=> \(A\ge\sqrt{3}\)
\(MinA=\sqrt{3}\)khi x=y=z=3
coi nó là pt ẩn x tham số Y:
Vậy pt <=> \(\left(Y-1\right)x^2+\left(2Y-1\right)x+2Y-1=0\)
xét \(\Delta=\left(2Y-1\right)^2-4\left(Y-1\right)\left(2Y-1\right)=4Y^2-4Y+1-\left(4Y-4\right)\left(2Y-1\right)\)
\(=4Y^2-4Y+1-8Y^2+12Y-4=-4Y^2+8Y-3=\left(-2Y+1\right)\left(2X-3\right)\)
Do pt có nghiệm nên ta có: \(\Delta\ge0\Leftrightarrow\left(-2Y+1\right)\left(2Y-3\right)\ge0\Leftrightarrow\frac{1}{2}\le Y\le\frac{3}{2}\)
Vậy Min P=\(\frac{1}{2}\) và Max P=\(\frac{3}{2}\)
\(\frac{x^2+x+1}{x^2+2x+2}\)
= \(\frac{x^2+2x+1-x}{x^2+2x+1+1}\)
= ..............
đến đây mk ko biết phân tích nên
bn làm tiếp nhé