\(\frac{x^2+x+1}{x^2+2x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

coi nó là pt ẩn x tham số Y:

Vậy pt <=> \(\left(Y-1\right)x^2+\left(2Y-1\right)x+2Y-1=0\)

xét \(\Delta=\left(2Y-1\right)^2-4\left(Y-1\right)\left(2Y-1\right)=4Y^2-4Y+1-\left(4Y-4\right)\left(2Y-1\right)\)

\(=4Y^2-4Y+1-8Y^2+12Y-4=-4Y^2+8Y-3=\left(-2Y+1\right)\left(2X-3\right)\)

Do pt có nghiệm nên ta có: \(\Delta\ge0\Leftrightarrow\left(-2Y+1\right)\left(2Y-3\right)\ge0\Leftrightarrow\frac{1}{2}\le Y\le\frac{3}{2}\)

Vậy Min P=\(\frac{1}{2}\) và Max P=\(\frac{3}{2}\)

22 tháng 2 2017

\(\frac{x^2+x+1}{x^2+2x+2}\)

\(\frac{x^2+2x+1-x}{x^2+2x+1+1}\)

= ..............

đến đây mk ko biết phân tích nên 

bn làm tiếp nhé

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 8 2016

không có điều kiện à

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

22 tháng 7 2016

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

22 tháng 7 2016

Cảm ơn bn nha :))

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3