K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(\frac{x+3}{\sqrt{x}}=\sqrt{x}+\frac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{3}{\sqrt{x}}}=2\sqrt{3}\)

dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{\sqrt{x}}< =>x=3\)

\(MIN=2\sqrt{3}\)

24 tháng 8 2021

Đk x>=0   

A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)=\(\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}\)=\(\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}\)=\(2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\)nguyên 

=> 6\(⋮\)\(\sqrt{x}+3\)=>\(\sqrt{x}+3\in\left\{1;2;3;6\right\}\)=>\(\sqrt{x}\in\left\{0;3\right\}\)vì \(\sqrt{x}\ge0\)

vậy x\(\in\left\{0;9\right\}\)

24 tháng 8 2021

\(ĐK:x\ge0\)

\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}=\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}=\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}=2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\inℤ\Leftrightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

lập bảng xét nốt nhé:)

14 tháng 8 2021

\(\sqrt{x}\)-3<-1

\(\sqrt{x}\)<-1+3

\(\sqrt{x}\)< 2

x< 4

phần dầu mỗi dòng bạn cho dấu tuơng đuơng giúp mk nhé

14 tháng 8 2021

\(\dfrac{1}{\sqrt{x-3}}< -1=>\sqrt{x-3}< 0=>x\varepsilon\) rỗng

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

18 tháng 2 2021

Bạn ơi xem lại cái ở trên nha!

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:
\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\)

Xét:

\(x^4+8xy^3-(x^2+2y^2)^2=8xy^3-4y^4-4x^2y^2\)

\(=-4y^2(x^2-2xy+y^2)=-4y^2(x-y)^2\leq 0\)

\(\Rightarrow x^4+8xy^3\leq (x^2+2y^2)^2\)

\(\Rightarrow \frac{x^2}{\sqrt{x^4+8xy^3}}\geq \frac{x^2}{x^2+2y^2}(*)\)

Mặt khác:
\(y^4+y(x+y)^3-(x^2+2y^2)^2=x^3y+3xy^3-2y^4-x^4-x^2y^2\)

\(=x^3(y-x)+3y^3(x-y)+y^4-x^2y^2\)

\(=x^3(y-x)+3y^3(x-y)+y^2(y-x)(y+x)\)

\(=(y-x)(x^3-2y^3+xy^2)\)

\(=(y-x)[(x-y)(x^2+xy+y^2)+y^2(x-y)]\)

\(=-(x-y)^2(x^2+xy+2y^2)\leq 0\)

\(\Rightarrow y^4+y(x+y)^3\leq (x^2+2y^2)^2\Rightarrow \frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\geq \frac{2y^2}{x^2+2y^2}(**)\)

Từ $(*); (**)\Rightarrow A\geq 1$

NV
8 tháng 8 2021

a.

\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)

\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)

\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)

b. ĐKXĐ: \(x\le1\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)

\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)

8 tháng 8 2021

dạ em cảm ơn anh ạ 

a: Thay x=1 và y=2 vào (d), ta được:

\(m+1-2m+3=2\)

\(\Leftrightarrow4-m=2\)

hay m=2

20 tháng 8 2021

2+ 6/ căn x -1