\(Q=\sqrt{2x^2+2x+1}+\sqrt{2x^2-8x+10}\)

Cần cực kì gấp ai nhanh cho 5 tik...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)

\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)

\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)

Từ đó tìm được Max Min

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii