Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left|x-y+3\right|\ge0\\\left(2y-3\right)^{2016}\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\y=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ..........
Vì |x-y+3| luôn lớn hơn hoặc bằng 0 với mọi x,y
2015(2y-3)2016 lớn hơn hoặc bằng 0 với mọi x,y
=> |x-y+3|=0 và 2015(2y-3)2016=0
<=> x-y+3=0 và 2y-3=0
<=>x-y+3=0 và y=3/2
Thay vào bạn sẽ tìm đc x
Nhớ k mk nha
để P nhỏ nhất thì x = 2015 hoặc 2016 hoặc 2017
xét x = 2015 thì P = 3
xét x = 2016 thì P = 2
xét x = 2017 thì P = 3
Vậy \(P_{min}\) = 2
tui mới học lớp 6 nên hok bít đúng hôk
Với \(\forall x;y\) ta có :
\(\left\{{}\begin{matrix}\left(x-2y\right)^2\ge0\\\left(y-2015\right)^{2016}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2015\right)^{2016}\ge0\)
Dấu "=" xảy ra khi vào chỉ khi :
\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2015\right)^{2016}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2015=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2015}{2}\\y=2015\end{matrix}\right.\)
Vậy \(P_{Min}=0\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2015}{2}\\y=2015\end{matrix}\right.\)