\(\frac{X+1}{X^2+X+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 8 2016

không có điều kiện à

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
25 tháng 7 2020

Lời giải:

ĐK: $x\in\mathbb{R}$

$A=\frac{x^2+x+1}{x^2+1}=1+\frac{x}{x^2+1}$

$2A=2+\frac{2x}{x^2+1}=1+\frac{(x+1)^2}{x^2+1}$

Vì $(x+1)^2\geq 0; x^2+1>0$ với mọi $x$ nên $\frac{(x+1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\geq 1$

$\Rightarrow A\geq \frac{1}{2}$. Vậy $A_{\min}=\frac{1}{2}$ khi $x=-1$

Mặt khác:

$2A=2+\frac{2x}{x^2+1}=3-(1-\frac{2x}{x^2+1})=3-\frac{(x-1)^2}{x^2+1}$

Lập luận tương tự ở trên ta cũng có $\frac{(x-1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\leq 3\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$ khi $x=1$

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!