Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
\(---------\)
Ta có:
\(x+y+4=\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right)\left(y+2\right)}\) (theo bđt \(AM-GM\) cho bộ số gồm hai số thực không âm)
nên \(x+y+\left(x+y+4\right)\ge x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}\)
hay nói cách khác, \(2\left(x+y+2\right)\ge12\) (do \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\) )
\(\Rightarrow\) \(x+y\ge4\)
Do đó, sau khi thiết lập điều kiện cho \(x,y\) , ta tiếp tục áp dụng \(AM-GM\) cho 3 số thực dương đã cho trước, điển hình như:
\(\frac{x^3}{y+2}+\frac{y+2}{2}+2\ge3\sqrt[3]{\frac{x^3}{\left(y+2\right)}.\frac{\left(y+2\right)}{2}.2}=3x\)
\(\Rightarrow\) \(\frac{x^3}{y+2}\ge3x-\frac{y+2}{2}-2\) \(\left(1\right)\)
Đổi biến, thực hiện công đoạn trên tương tự đối với phân thức sau, rút gọn và biến đổi lặp lại:
\(\frac{y^3}{x+2}\ge3y-\frac{x+2}{2}-2\) \(\left(2\right)\)
Gộp \(\left(1\right)\) và \(\left(2\right)\) với nhau cùng với dấu liên kết \(\left(+\right)\) , khi đó:
\(\frac{x^3}{y+2}+\frac{y^3}{x+2}\ge\frac{5}{2}\left(x+y\right)-6\)
Lúc đó,
\(M\ge\frac{5}{2}\left(x+y\right)+\frac{48}{x+y}-6\)
\(---------\)
Đặt \(t=x+y\) \(\Rightarrow\) \(t\ge4\)
\(\Rightarrow\) \(\frac{t}{2}\ge2\) \(\Rightarrow\) \(\frac{t}{2}-2\ge0\) \(\left(3\right)\)
Ta biễu diễn bđt trên lại như sau:
\(M\ge\frac{5t}{2}+\frac{48}{t}-6\)
tức là \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2\) (do \(\left(3\right)\) )
hay \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2=3t+\frac{48}{t}-8\)
Mặt khác, ta lại có: \(3t+\frac{48}{t}\ge2\sqrt{3t.\frac{48}{t}}=24\)
nên \(M\ge24-8=16\)
Vậy, \(M_{min}=16\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=2\)
- cách Phước Nguyễn dài :)). Tư gt bạn suy ra đc \(\sqrt{x+2}+\sqrt{y+2}=4\).(1)
- Áp dụng bdt cosi cho 3 số dg :\(\frac{x^3}{y+2}+\sqrt{y+2}+\sqrt{y+2}\ge3x\)\(\frac{^{y^3}}{x+2}+\sqrt{x+2}+\sqrt{x+2}\ge3y\)
\(\Rightarrow\frac{x^3}{y+2}+\frac{y^3}{x+2}+2.\left(\sqrt{x+2}+\sqrt{y+2}\right)\ge3\left(x+y\right)\)
\(\Rightarrow M+8\ge3\left(x+y\right)+\frac{48}{x+y}\ge2.\sqrt{3.\left(x+y\right).\frac{48}{x+y}}=24\)( do (1) và áp dụng bdt cosi cho 2 số dg) . Dấu "=" xảy ra <=> x=y=2 . OK.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
P=\(\frac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
>=\(\frac{\left(x+y\right)^2}{y-1+x-1}=\frac{\left(x+y\right)^2}{x+y-2}\)(bđt cauchty schwarz dạng engel)\(=\frac{\left(x+y\right)^2-4+4}{x+y-2}=\frac{\left(x+y-2\right)\left(x+y+2\right)+4}{x+y-2}=x+y+2+\frac{4}{x+y-2}\)
\(=x+y-2+\frac{4}{x+y-2}+4>=2\sqrt{\frac{\left(x+y-2\right)4}{x+y-2}+4}=2\cdot2+4=8\)
(bđt cosi)
dấu = xảy ra khi \(\frac{x}{y-1}=\frac{y}{x-1}\Rightarrow\frac{x}{y}=\frac{y-1}{x-1}=\frac{x+y-1}{y+x-1}=1\Rightarrow x=y\)
\(x+y-2=\frac{4}{x+y-2}\Rightarrow\left(x+y-2\right)^2=4\Rightarrow x+y-2=2\Rightarrow x+y=4\Rightarrow x=y=2\)(tm)
vậy min P là 8 tại x=y=2
1. \(B=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{2}=\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}-2}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b,
\(B=\frac{\sqrt{x}+1}{\sqrt{x}+2}< \frac{2}{3}=>3\sqrt{x}+3< 2\sqrt{x}+4=>\sqrt{x}< 1=>0\le x< 1\)
Vậy ...
ta có
x2\(\ge\)0
x2+2>0->(x2+2)3>0
suy ra\(\frac{x^2}{\left(x^2+2\right)^3}\)\(\ge\)0
vậy min =0