Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
A=\(x^2+y^2-4x+2y+6\)
=\(x^2-4x+4+y^2+2y+1+1\)
=\(\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\)
Vậy Amin =1 \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
\(D=x^2-2xy+2xy+2y^2+2x-10y+17\)
\(D=\left(x^2+2x+1\right)+2\left(y^2-5y+\frac{25}{4}\right)+\frac{7}{2}\)
\(D=\left(x+1\right)^2+2\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)
Vậy GTNN của D là \(\frac{7}{2}\)khi x = -1; y = \(\frac{5}{2}\)
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
\(D=x^2+2y^2-2xy+4x-3y-12\)
\(=\left(x^2-2xy+4x\right)+2y^2-3y-12\)
\(=\left[x^2-2x\left(y-2\right)+\left(y-2\right)^2\right]+2y^2-3y-12-y^2+4y-4\)\(=\left(x-y+2\right)^2+y^2+y+8\)
\(=\left(x-y+2\right)^2+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{31}{4}\)
\(=\left(x-y+2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\forall x\)
Vậy Min D = \(\dfrac{31}{4}\) khi \(\left\{{}\begin{matrix}x-y+2=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+\dfrac{5}{2}=0\\y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)