Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x+6\)
\(=x^2-4x+4+2\)
\(=\left(x-2\right)^2+2\)
\(\ge\left(3-2\right)^2+2\)
\(\ge1+2\)
\(\ge3\)
Dấu "=" xảy ra <=> x=3
Vậy min của biểu thức bằng 3 khi x=3
B = 2\(x^2\) - 4\(x\) - 8
B = 2(\(x^2\) - 2\(x\) + 4) - 16
B = 2(\(x-2\))2 - 16
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)
⇒ 2(\(x-2\))2 - 16 ≥ -16 ∀ \(x\)
Dấu bằng xảy ra khi (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)
Vậy Bmin = -16 khi \(x=2\)
Tìm min của C biết:
C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17
C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1
C = (\(x\) - y)2 + 2(\(x\) - y) + 1 + (y2 - 8y + 16)
C = (\(x-y+1\))2 + (y - 4)2
Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)
\(B=2x^2-4x-8=2\left(x^2-2x-4\right)\)
\(=2\left(x^2-2x+1-5\right)\)
\(=2\left[\left(x-1\right)^2-5\right]\)
\(=2\left(x-1\right)^2-10\ge-10\)
Vậy \(B_{min}=-10\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(F=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x+4=t\)
\(\RightarrowĐT=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
hay \(\left(x^2+5x+5\right)^2-1\ge-1\)
Vậy \(F_{min}=-1\Leftrightarrow x^2+5x+5=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)
\(G=4x-x^2=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\le4\)
Vậy \(G_{max}=4\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(H=25-x-5x^2=-5\left(x^2+\frac{x}{5}-5\right)\)
\(=-5\left(x^2+2x.\frac{1}{10}+\frac{1}{100}-\frac{501}{100}\right)\)
\(=-5\left[\left(x+\frac{1}{10}\right)^2-\frac{501}{100}\right]\)
\(=-5\left(x+\frac{1}{10}\right)^2+\frac{101}{20}\le\frac{101}{2}\)
Vậy \(H_{max}=\frac{101}{2}\Leftrightarrow x+\frac{1}{10}=0\Leftrightarrow x=-\frac{1}{10}\)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4
=> GTNN a) =3/4 khi x=-1/2
b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6
=> GTNN b) = -6 khi x=-1/2
c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12
GTNN c) =12 khi x=-1
d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14
GTNN d) =-14 khi x=2 , y=4
\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)
Dấu \("="\Leftrightarrow x=-1\)
\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Bài làm
Với x = 3 thì :
Đặt \(A=x^2-4x+6=x^2+2\cdot2x+2\cdot2+2=\left(x+2\right)^2+2\ge2\forall x\)
\(\Rightarrow\text{ Khi }x=3\text{ thì }Min_A=\left(x+2\right)^2+2=5^2+2=27\)
x2 - 4x + 6 = ( x2 - 4x + 4 ) + 2 = ( x - 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = 2
=> GTNN của biểu thức = 2 <=> x = 2