Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$G=\frac{x^2+x+2}{2x^2-2x+3}$
$\Rightarrow G(2x^2-2x+3)=x^2+x+2$
$\Leftrightarrow x^2(2G-1)-x(2G+1)+(3G-2)=0(*)$
Vì $G$ tồn tại nên dấu "=" tồn tại, điều này có nghĩa là $(*)$ luôn có nghiệm.
$\Rightarrow \Delta=(2G+1)^2-4(2G-1)(3G-2)\geq 0$
$\Leftrightarrow -20G^2+32G-7\geq 0$
$\Leftrightarrow 20G^2-32G+7\leq 0$
$\Leftrightarrow \frac{16+\sqrt{116}}{20}\geq G\geq \frac{16-\sqrt{116}}{20}$
Vậy....
\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{9\left(x^2-2x+2\right)-5x^2+20x-20}{2\left(x^2-2x+2\right)}=\frac{9}{2}-\frac{5\left(x-2\right)^2}{2\left(x-1\right)^2+2}\le\frac{9}{2}\)
\(C_{max}=\frac{9}{2}\) khi \(x=2\)
\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{-\left(x^2-2x+2\right)+5x^2}{2\left(x^2-2x+2\right)}=-\frac{1}{2}+\frac{5x^2}{2\left(x-1\right)^2+2}\ge-\frac{1}{2}\)
\(C_{min}=-\frac{1}{2}\) khi \(x=0\)
Câu D bạn coi lại đềm kết quả rất xấu: \(\frac{3-\sqrt{17}}{12}\le D\le\frac{3+\sqrt{17}}{12}\)
a, \(3x^3-5x^2-x-2>0\)
\(< =>3x^3+x^2+x-6x^2-2x-2>0\)
\(< =>x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)>0\)
\(< =>\left(x-2\right)\left(3x^2+x+1\right)>0\)
có \(3x^2+x+1=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{3}\right)=3\left[x^2+2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{35}{36}\right]\)
\(=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{35}{36}\right]>0=>x-2>0< =>x>2\)
b, \(A=2x^2+y^2-2xy-2x+3\)
\(A=x^2-2xy+y^2+x^2-2x+1+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
dấu"=" xảy ra<=>\(x=y=1\)