\(P=\dfrac{2010x+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

mik nghĩ đề sai lẽ ra phải là P=\(\dfrac{2010+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)(\(-1\le x\le1\))

P=\(\dfrac{2010}{\sqrt{1-x^2}}+2011+\dfrac{2012}{\sqrt{1-x^2}}=\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1-x\right).\left(1+x\right)}}+2011\)

áp dụng BDT CÔ SI \(\sqrt{\left(1-x\right)\left(1+x\right)}\le\dfrac{1-x+1+x}{2}=1\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2010\left(1\right)\)

tương tự \(\dfrac{2012}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012\left(2\right)\)

cộng vế (1)(2)=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012.}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012+2010=4022\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1+x\right)\left(1-x\right)}}+2011\ge4022+2011=6033\)

dấu = xảy ra khi và chỉ khi x=0

vậy min P=6033

a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)

b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)

c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)

d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)

e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Lời giải:

Áp dụng BĐT Cô-si ngược dấu:

\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4(x-2010)}\leq \frac{4+(x-2010)}{4}\)

\(\Rightarrow \sqrt{x-2010}-1\leq \frac{4+(x-2010)}{4}-1=\frac{x-2010}{4}\)

\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}\leq \frac{1}{4}\)

Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=4\\ y-2011=4\\ z-2012=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2014\\ y=2015\\ z=2016\end{matrix}\right.\)