Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x ta có :
\(A=\left|x-3\right|+\left|x-2\right|\)
\(\Leftrightarrow A=\left|x-3\right|+\left|2-x\right|\)
\(\Leftrightarrow A\ge\left|x-3+2-x\right|\)
\(\Leftrightarrow A\ge\left|-1\right|\)
\(\Leftrightarrow A\ge1\)
Dấu "=" xảy ra khi :
\(\left(x-3\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-3\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x-3\le0\\2-x\le0\end{cases}}\end{cases}}\)
Sửa đề: TÌm GTNN của biểu thức
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x-2015\le0\\x-2014=0\\x-2013\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x=2014\\x\ge2013\end{cases}}\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{Min}=2\)
Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l
=> A = l2014 - x l + l2015 - x l + l x-2016 l (Với x>2016 )
=> A >= l 2014 -x + x- 2016 l + l2015 -x l
=> A >= l2014-2016l + l2015-x l
=> A >= l -2 l + l2015 - x l
=> A >= 2 + l2015 - x l
Vì l2015 - x l >=0 Nên <=> A >= 2 +0
=> A >=2
Vậy Min A =2 <=> l2015 - x l = 0
=> 2015 - x= 0 => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2