K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Với mọi x ta có :

\(A=\left|x-3\right|+\left|x-2\right|\)

\(\Leftrightarrow A=\left|x-3\right|+\left|2-x\right|\)

\(\Leftrightarrow A\ge\left|x-3+2-x\right|\)

\(\Leftrightarrow A\ge\left|-1\right|\)

\(\Leftrightarrow A\ge1\)

Dấu "=" xảy ra khi :

\(\left(x-3\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-3\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x-3\le0\\2-x\le0\end{cases}}\end{cases}}\)

8 tháng 10 2017

min |x+5|+2-x= -3

8 tháng 10 2017

bn giải hoàn chỉnh giùm mk dc k

21 tháng 3 2017

Sửa đề: TÌm GTNN của biểu thức 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có: 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x-2015\le0\\x-2014=0\\x-2013\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x=2014\\x\ge2013\end{cases}}\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{Min}=2\)

15 tháng 4 2016

Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l 
        => A = l2014 - x l + l2015 - x l + l x-2016 l   (Với x>2016 )
         => A >= l 2014 -x + x- 2016 l + l2015 -x l
        => A >= l2014-2016l + l2015-x l
       => A >= l -2 l + l2015 - x l
        => A >= 2 + l2015 - x l 
      Vì l2015 - x l >=0 Nên <=> A >= 2 +0
                                         => A >=2 
  Vậy Min A =2 <=> l2015 - x l = 0 
                         => 2015 - x= 0   => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2 

15 tháng 4 2016

sai rồi