\(\sqrt{3+x}+\sqrt{6-x}\) với \(-3\le x\le6\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2019

\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)

\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)

\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

11 tháng 10 2015

\(\sqrt{3}\)

23 tháng 9 2015

Bình phương A ta được A=\(8+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

A min khi (x-2)(6-x) nhỏ nhất tương đương vs x=2 hoặc x=6. khi đó A=2 là nhỏ nhất

A max khi (x-2)(6-x) lớn nhất do 2 số kia có tổng ko đổi nên tích lớn nhất khi x-2=6-x tương đương với x=4

khi đó A=4 là lớn nhất

23 tháng 9 2015

\(A^2=x-2+6-x+2\text{ }\sqrt{\left(x-2\right)\left(6-x\right)}=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Vậy GTNN là 2 tại A x = 2 ; x = 6 

Vì  \(2\sqrt{\left(x-2\right)\left(6-x\right)}\le x-2+6-x=4\)

=> \(A^2\le4+4=8\Rightarrow A\le2\sqrt{2}\)

Vậy GTLN của A là ... tại x = 4 

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

29 tháng 8 2016

A > 0.

Xét \(A^2=8+2\sqrt{16-x^2}\ge8;\forall-4\le x\le4\) (*)

\(\Rightarrow A\ge\sqrt{8}=2\sqrt{2};\forall-4\le x\le4\)

Dấu '=' xảy ra khi và chỉ khi dấu '=' ở (*) xảy ra

↔ x = -4 hoặc x = 4

Vậy \(min_A=2\sqrt{2}\) khi \(x=\pm4\)

E2 = 8+căn(2-x)(x+6)

+) vì căn (2-x)(x+6) >= 

=> E2 >= 8

với đk -6<=x<=2 thì E luôn dương( câu này viết gọn thành E>= 0)

=> E>= căn 8=2 căn 2

=> Min E = 2 căn 2 khi x=-6 hoặc x=2

+)E2 = 8+căn( -x2 -4x+12)

E2=8 +căn(-x2-4x-4 + 16) = 8+căn(-(x+2)2 + 16) <= 8 + căn 16 = 8+4 = 12 ( vì -(x+2)2 <= 0 V x)

=>E<= căn12 = 2 căn 3

=> Max E = 2 căn 3 khi x=-2

học tốt

a sorry

phần max nha

E2 <= 8 + 2 căn 16 = 8+8=16

E>0 =>0< E<=4

=> MaxE = 4 khi x=-2

xin lỗi nhiều

học tốt