Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=9x^2-6x+1+x+\frac{1}{9x}+2019\)
\(M=\left(3x-1\right)^2+x+\frac{1}{9x}+2019\ge\left(3x-1\right)^2+\frac{2}{3}+2019\left(AM-GM\right)\)
\(MinM=\frac{6059}{3}\)
Đẳng thức xảy ra khi x=1/3
Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le4\)
Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)
Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)
\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)
Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)
Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)
\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)