\(\frac{x^2-2x+2016}{x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).

Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)

Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\) 

Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.

Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.

\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)

Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.

Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)

Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),

max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)

18 tháng 12 2016

bằng 20 đó bạn

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

10 tháng 7 2019

\(A=x^6+2x\left(x^2+y\right)+x^2+y^2+26\) 

   \(=x^6+2x^2+2xy+x^2+y^2+26\) 

    \(=x^6+2x^2+\left(x+y\right)^2+26\ge26\forall x;y\) 

Dấu "=" xảy ra<=> \(x=0\) và \(\left(x+y\right)^2=0\Rightarrow y=0\) 

Vậy Amin =26 tại x=y=0

11 tháng 7 2019

B=\(y^2-2xy+3x^2+2y-14x+1949\)

 \(=\left(y^2-2xy+x^2+2y-2x+1\right)+\left(2x^2-12x+18\right)+1930\)

 \(=\left(x-y-1\right)^2+2\left(x-3\right)^2+1930\)

  \(\ge1930\)

MinB=1930 khi \(\hept{\begin{cases}x=y+1\\x=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

27 tháng 8 2016

không có điều kiện à

31 tháng 1 2018

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

11 tháng 10 2016

\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)

Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)

\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)

Vậy ......................

Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x